Feature

Beyond cystic fibrosis: Genetics of PF and other lung diseases


 

The future of genetic screening for PF

Future genetic screening approaches for PF may cast an even wider net while better stratifying risk for family members. At Brigham and Women’s Hospital, where family screening was a major impetus for the 2008 founding of the Pulmonary Genetics Center, research published several years ago by Dr. Raby and his colleagues found that 31% of 107 asymptomatic first-degree relatives of patients with PF had interstitial lung abnormalities on chest CTs – whether or not a family history was reported – and 18% had clear radiographic or physiological manifestations of fibrosis (Am J Respir Crit Care Med. 2020;201[10]:1240-8).

Benjamin Raby, MD, MPH

Dr. Benjamin Raby

“That’s more than 10-fold higher than what we thought we’d see, based on prior literature. … And the numbers were pretty much the same whether or not there was a family history of fibrosis reported by the patient,” said Dr. Raby, also the Leila and Irving Perlmutter professor of pediatrics at Harvard Medical School, Boston, and chief of the division of pulmonary medicine at Boston Children’s Hospital. “We used to think we only needed to worry about genetic risk when there was a family history. But now we see that sporadic cases are also driven by genetics.”

Their study also included a 2-year follow-up chest CT, in which the majority of the screened relatives participated. Of those, 65% who had interstitial changes at baseline showed progression. Four percent of those without interstitial abnormalities at baseline developed abnormalities (Am J Respir Crit Care Med. 2023;207[2]:211-4). “The fact that 65% progressed suggests that in the majority of patients what we’re finding is something that’s real and is going to be clinically meaningful for patients,” he said.

Genetic signatures

A next phase of research at Brigham & Women’s and Boston Children’s, he said, will address PF’s “complex genetic signature” and test polygenic risk scores for idiopathic PF that take into account not only rare genetic variants that can be solidly linked to disease but many common genetic variants being detected in genome-wide association studies. [By definition, common variants, otherwise known as single-nucleotide polymorphisms (SNPs) occur with greater frequency in the general population (> 5%), generally reside within noncoding regions, and may contribute to disease risk but alone do not cause disease.]

“As technologies and genetic studies improve, we’re seeing we can estimate much better the likelihood of disease than we could 10 years ago,” he said. A “potent” common variant called the MUC5B promoter polymorphism has been shown to confer a 3-fold to 20-fold increased risk for PF, he noted. (Polygenic risk scores are also being developed, he said, for asthma and chronic obstructive pulmonary disease.)

“Every time one sees a patient with PF that is thought to be idiopathic one should start thinking about their at-risk family members, particularly their siblings,” Dr. Raby said. But in doing so, “wouldn’t it be wonderful if we could use polygenic risk scores to assure some [family members] that they’re in the lowest tier of risk and might need pulmonary function studies every 5 years, for example, versus someone we’d want to see more frequently, versus someone [for whom] we’d want to start preventive therapy at the earlier signs of declining lung function?”

Moving forward, he and the others said, the field needs more research to determine how genetic risk factors predict disease progression and prospective clinical trials to test whether long-term outcomes are indeed improved by early institution of antifibrotic therapy and other genetics-driven management decisions. “The data we’re using to inform prognosis and treatment decisions are compelling, but a lot of it is based on cohort studies and retrospective research,” Dr. Newton said.

Multi-institutional transomics studies and other research projects are underway, meanwhile, to build upon gene identifications and learn more about the pathobiology of PF. “We know about two big genetic pathways … but we need to sort it all out,” he said. For instance, “are there intermediate pathways? And where does it actually start? What kind of cell?”

Pages

Next Article: