Epilepsy

Theme
medstat_erc
erc
Main menu
ERC Main Menu
Unpublish
Altmetric
DSM Affiliated
Display in offset block
Enable Disqus
Display Author and Disclosure Link
Publication Type
News
Slot System
Top 25
Disable Sticky Ads
Disable Ad Block Mitigation
Featured Buckets Admin
Show Ads on this Publication's Homepage
Consolidated Pub
Show Article Page Numbers on TOC
Use larger logo size
Off

Epilepsy Linked to Higher COVID Hospitalization, Death Rates

Article Type
Changed
Wed, 03/20/2024 - 11:17

Epilepsy was linked to a significantly increased the risk for hospitalization and death from COVID-19 early in the pandemic, while healthcare utilization rates in this patient population declined, data from two linked studies showed. 

Results showed that individuals with epilepsy had a 60% higher risk for hospitalization and a 33% higher risk of dying from COVID-19 than those without the disorder. However, during the pandemic, the number of hospitalizations and ER visits by people with epilepsy dropped by as much as 30%. 

“The neurotropic effects of Sars-CoV-2 might explain some of this increased risk for people with epilepsy, or epilepsy might be associated with alterations in the immune system, predisposing to more severe COVID-19,” wrote the investigators, led by Owen Pickrell, MBBChirm, PhD, Swansea University, United Kingdom.

The findings were published online March 5 in Epilepsia
 

Skill Shifting 

Epilepsy is one of the most common neurological conditions and affects approximately 50 million people worldwide, with significant comorbidity and an increased risk for early death.

During the pandemic, clinicians treating people with epilepsy and other conditions shifted their skills to treat an ever-increasing number of patients with COVID-19, which may have hindered epilepsy-specific services for a time.

To further explore how the COVID-19 pandemic may have affected the health of this patient population, researchers analyzed health records from a large database with information about hospital admissions, primary care visits, COVID-19 vaccination status, and demographics of 90% of Welsh residents.

Those living with epilepsy before or during the study period (March 1, 2020, to June 31, 2021) were identified and compared with controls without epilepsy. 

The analysis included approximately 27,280 people with epilepsy and 136,400 matched controls. Among those with epilepsy, there were 158 deaths (0.58%) and 933 hospitalizations (3.4%). In comparison, there were 370 deaths (0.27%) and 1871 hospitalizations (1.4%) in the control group.

Unadjusted analyses showed the risk of dying from COVID-19 for those with epilepsy vs controls was more than twofold higher (hazard ratio [HR], 2.15; 95% CI; 1.78-2.59) and the increase in the risk for hospitalization was similar (HR, 2.15; 95% CI; 1.94-2.37). 

After adjusting for 40 comorbidities, including serious mental illness, asthma, and diabetes, those with epilepsy had a 60% increased risk for hospitalization (adjusted HR [aHR], 1.60) and a 33% increased risk for death (aHR, 1.33) than those without epilepsy (all P < .0001). 

The findings “may have implications for prioritizing future COVID-19 treatments and vaccinations for people with epilepsy,” the investigators wrote.

Study limitations included the inability to account for the effect of vaccinations or prior infections with SARS-CoV-2. Moreover, the study did not account for geographical or temporal variations in prevalence and COVID-19 variants
 

Consultations Canceled 

In the related study, researchers analyzed healthcare utilization by people with epilepsy before and after the pandemic using the same database. Results showed hospital admissions, ER visits, and outpatient visits significantly decreased during the pandemic. 

In the year before the pandemic, people with epilepsy had double the rate of ER visits (rate ratio [RR], 2.36), hospital admissions (RR, 2.08), and outpatient appointments (RR, 1.92) compared with matched controls. 

However, during the pandemic there was a greater reduction in hospital admissions (RR, 0.70; 95% CI, 0.69-0.72) and ER visits (RR, 0.78; 95% CI, 0.77-0.70) in those with epilepsy versus matched controls (RR, 0.82; 95% CI, 0.81-0.83) as well as hospital visits and ER visits (RR, 0.87; 95% CI, 0.86-0.88; all P < .0001). New epilepsy diagnoses also decreased during the pandemic (RR, 0.73; P < .0001)

The redeployment of epileptologists during the pandemic also meant that epilepsy consultations and investigations were canceled, making it harder for people with epilepsy to access specialty care, the researchers noted. 

“Our research also showed that there were fewer new diagnoses of epilepsy and fewer contacts with health services by people with epilepsy, during the period we examined,” Huw Strafford, lead data analyst for the studies, said in a release.

Both studies were funded by Health and Care Research Wales. Dr. Pickrell reported receiving speaker fees from UCB Pharma and Angelini Pharma, travel grants from Angelini Pharma, and an unrestricted grant from UCB Pharma.

A version of this article appeared on Medscape.com .

Publications
Topics
Sections

Epilepsy was linked to a significantly increased the risk for hospitalization and death from COVID-19 early in the pandemic, while healthcare utilization rates in this patient population declined, data from two linked studies showed. 

Results showed that individuals with epilepsy had a 60% higher risk for hospitalization and a 33% higher risk of dying from COVID-19 than those without the disorder. However, during the pandemic, the number of hospitalizations and ER visits by people with epilepsy dropped by as much as 30%. 

“The neurotropic effects of Sars-CoV-2 might explain some of this increased risk for people with epilepsy, or epilepsy might be associated with alterations in the immune system, predisposing to more severe COVID-19,” wrote the investigators, led by Owen Pickrell, MBBChirm, PhD, Swansea University, United Kingdom.

The findings were published online March 5 in Epilepsia
 

Skill Shifting 

Epilepsy is one of the most common neurological conditions and affects approximately 50 million people worldwide, with significant comorbidity and an increased risk for early death.

During the pandemic, clinicians treating people with epilepsy and other conditions shifted their skills to treat an ever-increasing number of patients with COVID-19, which may have hindered epilepsy-specific services for a time.

To further explore how the COVID-19 pandemic may have affected the health of this patient population, researchers analyzed health records from a large database with information about hospital admissions, primary care visits, COVID-19 vaccination status, and demographics of 90% of Welsh residents.

Those living with epilepsy before or during the study period (March 1, 2020, to June 31, 2021) were identified and compared with controls without epilepsy. 

The analysis included approximately 27,280 people with epilepsy and 136,400 matched controls. Among those with epilepsy, there were 158 deaths (0.58%) and 933 hospitalizations (3.4%). In comparison, there were 370 deaths (0.27%) and 1871 hospitalizations (1.4%) in the control group.

Unadjusted analyses showed the risk of dying from COVID-19 for those with epilepsy vs controls was more than twofold higher (hazard ratio [HR], 2.15; 95% CI; 1.78-2.59) and the increase in the risk for hospitalization was similar (HR, 2.15; 95% CI; 1.94-2.37). 

After adjusting for 40 comorbidities, including serious mental illness, asthma, and diabetes, those with epilepsy had a 60% increased risk for hospitalization (adjusted HR [aHR], 1.60) and a 33% increased risk for death (aHR, 1.33) than those without epilepsy (all P < .0001). 

The findings “may have implications for prioritizing future COVID-19 treatments and vaccinations for people with epilepsy,” the investigators wrote.

Study limitations included the inability to account for the effect of vaccinations or prior infections with SARS-CoV-2. Moreover, the study did not account for geographical or temporal variations in prevalence and COVID-19 variants
 

Consultations Canceled 

In the related study, researchers analyzed healthcare utilization by people with epilepsy before and after the pandemic using the same database. Results showed hospital admissions, ER visits, and outpatient visits significantly decreased during the pandemic. 

In the year before the pandemic, people with epilepsy had double the rate of ER visits (rate ratio [RR], 2.36), hospital admissions (RR, 2.08), and outpatient appointments (RR, 1.92) compared with matched controls. 

However, during the pandemic there was a greater reduction in hospital admissions (RR, 0.70; 95% CI, 0.69-0.72) and ER visits (RR, 0.78; 95% CI, 0.77-0.70) in those with epilepsy versus matched controls (RR, 0.82; 95% CI, 0.81-0.83) as well as hospital visits and ER visits (RR, 0.87; 95% CI, 0.86-0.88; all P < .0001). New epilepsy diagnoses also decreased during the pandemic (RR, 0.73; P < .0001)

The redeployment of epileptologists during the pandemic also meant that epilepsy consultations and investigations were canceled, making it harder for people with epilepsy to access specialty care, the researchers noted. 

“Our research also showed that there were fewer new diagnoses of epilepsy and fewer contacts with health services by people with epilepsy, during the period we examined,” Huw Strafford, lead data analyst for the studies, said in a release.

Both studies were funded by Health and Care Research Wales. Dr. Pickrell reported receiving speaker fees from UCB Pharma and Angelini Pharma, travel grants from Angelini Pharma, and an unrestricted grant from UCB Pharma.

A version of this article appeared on Medscape.com .

Epilepsy was linked to a significantly increased the risk for hospitalization and death from COVID-19 early in the pandemic, while healthcare utilization rates in this patient population declined, data from two linked studies showed. 

Results showed that individuals with epilepsy had a 60% higher risk for hospitalization and a 33% higher risk of dying from COVID-19 than those without the disorder. However, during the pandemic, the number of hospitalizations and ER visits by people with epilepsy dropped by as much as 30%. 

“The neurotropic effects of Sars-CoV-2 might explain some of this increased risk for people with epilepsy, or epilepsy might be associated with alterations in the immune system, predisposing to more severe COVID-19,” wrote the investigators, led by Owen Pickrell, MBBChirm, PhD, Swansea University, United Kingdom.

The findings were published online March 5 in Epilepsia
 

Skill Shifting 

Epilepsy is one of the most common neurological conditions and affects approximately 50 million people worldwide, with significant comorbidity and an increased risk for early death.

During the pandemic, clinicians treating people with epilepsy and other conditions shifted their skills to treat an ever-increasing number of patients with COVID-19, which may have hindered epilepsy-specific services for a time.

To further explore how the COVID-19 pandemic may have affected the health of this patient population, researchers analyzed health records from a large database with information about hospital admissions, primary care visits, COVID-19 vaccination status, and demographics of 90% of Welsh residents.

Those living with epilepsy before or during the study period (March 1, 2020, to June 31, 2021) were identified and compared with controls without epilepsy. 

The analysis included approximately 27,280 people with epilepsy and 136,400 matched controls. Among those with epilepsy, there were 158 deaths (0.58%) and 933 hospitalizations (3.4%). In comparison, there were 370 deaths (0.27%) and 1871 hospitalizations (1.4%) in the control group.

Unadjusted analyses showed the risk of dying from COVID-19 for those with epilepsy vs controls was more than twofold higher (hazard ratio [HR], 2.15; 95% CI; 1.78-2.59) and the increase in the risk for hospitalization was similar (HR, 2.15; 95% CI; 1.94-2.37). 

After adjusting for 40 comorbidities, including serious mental illness, asthma, and diabetes, those with epilepsy had a 60% increased risk for hospitalization (adjusted HR [aHR], 1.60) and a 33% increased risk for death (aHR, 1.33) than those without epilepsy (all P < .0001). 

The findings “may have implications for prioritizing future COVID-19 treatments and vaccinations for people with epilepsy,” the investigators wrote.

Study limitations included the inability to account for the effect of vaccinations or prior infections with SARS-CoV-2. Moreover, the study did not account for geographical or temporal variations in prevalence and COVID-19 variants
 

Consultations Canceled 

In the related study, researchers analyzed healthcare utilization by people with epilepsy before and after the pandemic using the same database. Results showed hospital admissions, ER visits, and outpatient visits significantly decreased during the pandemic. 

In the year before the pandemic, people with epilepsy had double the rate of ER visits (rate ratio [RR], 2.36), hospital admissions (RR, 2.08), and outpatient appointments (RR, 1.92) compared with matched controls. 

However, during the pandemic there was a greater reduction in hospital admissions (RR, 0.70; 95% CI, 0.69-0.72) and ER visits (RR, 0.78; 95% CI, 0.77-0.70) in those with epilepsy versus matched controls (RR, 0.82; 95% CI, 0.81-0.83) as well as hospital visits and ER visits (RR, 0.87; 95% CI, 0.86-0.88; all P < .0001). New epilepsy diagnoses also decreased during the pandemic (RR, 0.73; P < .0001)

The redeployment of epileptologists during the pandemic also meant that epilepsy consultations and investigations were canceled, making it harder for people with epilepsy to access specialty care, the researchers noted. 

“Our research also showed that there were fewer new diagnoses of epilepsy and fewer contacts with health services by people with epilepsy, during the period we examined,” Huw Strafford, lead data analyst for the studies, said in a release.

Both studies were funded by Health and Care Research Wales. Dr. Pickrell reported receiving speaker fees from UCB Pharma and Angelini Pharma, travel grants from Angelini Pharma, and an unrestricted grant from UCB Pharma.

A version of this article appeared on Medscape.com .

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167327</fileName> <TBEID>0C04F0FC.SIG</TBEID> <TBUniqueIdentifier>MD_0C04F0FC</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>Epilepsy COVID death</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240315T121649</QCDate> <firstPublished>20240315T122212</firstPublished> <LastPublished>20240315T122212</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240315T122211</CMSDate> <articleSource>FROM EPILEPSIA</articleSource> <facebookInfo/> <meetingNumber/> <byline>Eve Bender</byline> <bylineText>EVE BENDER</bylineText> <bylineFull>EVE BENDER</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Epilepsy was linked to a significantly increased the risk for hospitalization and death from COVID-19 early in the pandemic, while healthcare utilization rates </metaDescription> <articlePDF/> <teaserImage/> <teaser>Individuals with epilepsy had a 60% higher risk for hospitalization and a 33% higher risk of dying from COVID-19 than those without the disorder.</teaser> <title>Epilepsy Linked to Higher COVID Hospitalization, Death Rates</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>erc</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>FP</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>Copyright 2017 Frontline Medical News</copyrightStatement> </publicationData> <publicationData> <publicationCode>IM</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>icymicov</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term>356</term> <term>15</term> <term>21</term> <term canonical="true">22</term> <term>69586</term> </publications> <sections> <term>39313</term> <term>86</term> <term canonical="true">27970</term> </sections> <topics> <term>63993</term> <term canonical="true">211</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Epilepsy Linked to Higher COVID Hospitalization, Death Rates</title> <deck/> </itemMeta> <itemContent> <p><span class="tag metaDescription">Epilepsy was linked to a significantly increased the risk for hospitalization and death from COVID-19 early in the pandemic, while healthcare utilization rates in this patient population declined</span>, data from two linked studies showed. </p> <p>Results showed that individuals with epilepsy had a 60% higher risk for hospitalization and a 33% higher risk of dying from COVID-19 than those without the disorder. However, during the pandemic, the number of hospitalizations and ER visits by people with epilepsy dropped by as much as 30%. <br/><br/>“The neurotropic effects of Sars-CoV-2 might explain some of this increased risk for people with epilepsy, or epilepsy might be associated with alterations in the immune system, predisposing to more severe COVID-19,” wrote the investigators, led by Owen Pickrell, MBBChirm, PhD, Swansea University, United Kingdom.<br/><br/>The findings were <a href="https://onlinelibrary.wiley.com/doi/10.1111/epi.17910">published online</a> March 5 in <em>Epilepsia</em>. <br/><br/></p> <h2>Skill Shifting </h2> <p>Epilepsy is one of the most common neurological conditions and affects approximately 50 million people worldwide, with significant comorbidity and an increased risk for early death.</p> <p>During the pandemic, clinicians treating people with epilepsy and other conditions shifted their skills to treat an ever-increasing number of patients with COVID-19, which may have hindered epilepsy-specific services for a time.<br/><br/>To further explore how the COVID-19 pandemic may have affected the health of this patient population, researchers analyzed health records from a large database with information about hospital admissions, primary care visits, COVID-19 vaccination status, and demographics of 90% of Welsh residents.<br/><br/>Those living with epilepsy before or during the study period (March 1, 2020, to June 31, 2021) were identified and compared with controls without epilepsy. <br/><br/>The analysis included approximately 27,280 people with epilepsy and 136,400 matched controls. Among those with epilepsy, there were 158 deaths (0.58%) and 933 hospitalizations (3.4%). In comparison, there were 370 deaths (0.27%) and 1871 hospitalizations (1.4%) in the control group.<br/><br/>Unadjusted analyses showed the risk of dying from COVID-19 for those with epilepsy vs controls was more than twofold higher (hazard ratio [HR], 2.15; 95% CI; 1.78-2.59) and the increase in the risk for hospitalization was similar (HR, 2.15; 95% CI; 1.94-2.37). <br/><br/>After adjusting for 40 comorbidities, including serious mental illness, asthma, and diabetes, those with epilepsy had a 60% increased risk for hospitalization (adjusted HR [aHR], 1.60) and a 33% increased risk for death (aHR, 1.33) than those without epilepsy (all <em>P</em> &lt; .0001). <br/><br/>The findings “may have implications for prioritizing future COVID-19 treatments and vaccinations for people with epilepsy,” the investigators wrote.<br/><br/>Study limitations included the inability to account for the effect of vaccinations or prior infections with SARS-CoV-2. Moreover, the study did not account for geographical or temporal variations in prevalence and <a href="https://emedicine.medscape.com/article/2500142-overview">COVID-19 variants</a>. <br/><br/></p> <h2>Consultations Canceled </h2> <p>In the <a href="https://onlinelibrary.wiley.com/doi/full/10.1111/epi.17920">related study</a>, researchers analyzed healthcare utilization by people with epilepsy before and after the pandemic using the same database. Results showed hospital admissions, ER visits, and outpatient visits significantly decreased during the pandemic. </p> <p>In the year before the pandemic, people with epilepsy had double the rate of ER visits (rate ratio [RR], 2.36), hospital admissions (RR, 2.08), and outpatient appointments (RR, 1.92) compared with matched controls. <br/><br/>However, during the pandemic there was a greater reduction in hospital admissions (RR, 0.70; 95% CI, 0.69-0.72) and ER visits (RR, 0.78; 95% CI, 0.77-0.70) in those with epilepsy versus matched controls (RR, 0.82; 95% CI, 0.81-0.83) as well as hospital visits and ER visits (RR, 0.87; 95% CI, 0.86-0.88; all <em>P</em> &lt; .0001). New epilepsy diagnoses also decreased during the pandemic (RR, 0.73; <em>P</em> &lt; .0001)<br/><br/>The redeployment of epileptologists during the pandemic also meant that epilepsy consultations and investigations were canceled, making it harder for people with epilepsy to access specialty care, the researchers noted. <br/><br/>“Our research also showed that there were fewer new diagnoses of epilepsy and fewer contacts with health services by people with epilepsy, during the period we examined,” Huw Strafford, lead data analyst for the studies, said in a release.<br/><br/><span class="Emphasis">Both studies were funded by Health and Care Research Wales. Dr. Pickrell reported receiving speaker fees from UCB Pharma and Angelini Pharma, travel grants from Angelini Pharma, and an unrestricted grant from UCB Pharma.</span></p> <p> <em> <span class="Emphasis">A version of this article appeared on </span> <span class="Hyperlink"> <a href="https://www.medscape.com/viewarticle/epilepsy-linked-higher-covid-hospitalization-death-rates-2024a10004w0">Medscape.com</a> </span> <span class="Emphasis">.</span> </em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM EPILEPSIA

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Service Dogs Lead to Fewer Seizures in Treatment-Resistant Epilepsy

Article Type
Changed
Tue, 03/12/2024 - 13:36

Working with medically trained service dogs is associated with a 31% reduction in seizures compared with usual care in treatment-resistant epilepsy, a new study showed.

Investigators speculate that the dogs may ease participants’ stress, leading to a decrease in seizure frequency, although they note this relationship warrants more study.

“Despite the development of numerous antiseizure medications over the past 15 years, up to 30% of people with epilepsy experience persistent seizures,” study author Valérie van Hezik-Wester, MSc, of Erasmus University Rotterdam, Rotterdam, the Netherlands, said in a press release.

The unpredictable nature of seizures is one of the most disabling aspects of epilepsy, Ms. Hezik-Wester added. Seizure dogs are trained to recognize seizures and respond when they occur.

“The tasks that these dogs perform, along with their companionship, may reduce seizure-related anxiety, also potentially reducing seizures caused by stress, the most common trigger for seizures,” she said.

The findings were published online in Neurology.
 

Improve Quality of Life

The study included 25 individuals with medically refractory epilepsy who had an average of two or more seizures per week, with seizure characteristics associated with a high risk for injuries or dysfunction. They also had to be able to care for a service dog.

All were observed under usual care, which included antiseizure medications, neurostimulation devices, and other supportive therapies. Participants could then choose to work with a service dog that had completed socialization and obedience training or be assigned a puppy they would train at home.

The median follow-up was 19 months with usual care and 12 months with the intervention. Participants recorded seizure activity in diaries and completed surveys on seizure severity, quality of life, and well-being every 3 months. Daily seizure counts were converted to obtain cumulative seizure frequencies over 28-day periods.

Of the 25 original participants, six discontinued trial participation before the end of follow-up, four of whom left the study due to difficulty with dog care and training.

Participants receiving usual care reported an average of 115 seizures per 28-day period, while those with trained service dogs recorded 73 seizures in the same period, or a 37% difference between groups.

Researchers found that participants had an average of 31% fewer seizures during the past 3 months when they had seizure dogs, with seven participants achieving a 50%-100% reduction in seizures.

The number of seizure-free days increased from an average of 11 days per 28-day period before receiving a service dog to 15 days after working with a dog.

Scores on the EQ-5D-5L, which measures perceived health problems, decreased on average by 2.5% per consecutive 28-day period with the intervention, reflecting an increase in generic health-related quality of life (0.975; 95% CI, 0.954-0.997).

“These findings show that seizure dogs can help people with epilepsy,” said Ms. van Hezik-Wester. “However, we also found that this partnership with seizure dogs might not be the right fit for everyone, as some people discontinued their participation in this program. More research is needed to better understand which people can benefit from working with seizure dogs.”
 

Enhanced Quality of Life

In an accompanying editorial, Amir Mbonde, MB, and Amy Crepeau, MD, of Mayo Clinic in Phoenix, Arizona, noted the findings add to a growing body of work on the effectiveness of service dogs in reducing seizure frequency.

“In addition to improved seizure control, the EPISODE study demonstrated the benefit of seizure dogs in enhancing the quality of life for patients, a crucial component of comprehensive epilepsy care,” they wrote.

In prior studies, seizure dogs have identified an odor that a person emits before a seizure in up to 97% of people, they noted, adding that this ability “offers immense clinical benefits to people with epilepsy, enhancing their independence, social engagement, employment opportunities, self-confidence, and thus quality of life.”

Study limitations include its small sample size and high attrition rate.

The study was funded by the Netherlands Organization for Health Research and Development and Innovatiefonds Zorgverzekeraars.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Working with medically trained service dogs is associated with a 31% reduction in seizures compared with usual care in treatment-resistant epilepsy, a new study showed.

Investigators speculate that the dogs may ease participants’ stress, leading to a decrease in seizure frequency, although they note this relationship warrants more study.

“Despite the development of numerous antiseizure medications over the past 15 years, up to 30% of people with epilepsy experience persistent seizures,” study author Valérie van Hezik-Wester, MSc, of Erasmus University Rotterdam, Rotterdam, the Netherlands, said in a press release.

The unpredictable nature of seizures is one of the most disabling aspects of epilepsy, Ms. Hezik-Wester added. Seizure dogs are trained to recognize seizures and respond when they occur.

“The tasks that these dogs perform, along with their companionship, may reduce seizure-related anxiety, also potentially reducing seizures caused by stress, the most common trigger for seizures,” she said.

The findings were published online in Neurology.
 

Improve Quality of Life

The study included 25 individuals with medically refractory epilepsy who had an average of two or more seizures per week, with seizure characteristics associated with a high risk for injuries or dysfunction. They also had to be able to care for a service dog.

All were observed under usual care, which included antiseizure medications, neurostimulation devices, and other supportive therapies. Participants could then choose to work with a service dog that had completed socialization and obedience training or be assigned a puppy they would train at home.

The median follow-up was 19 months with usual care and 12 months with the intervention. Participants recorded seizure activity in diaries and completed surveys on seizure severity, quality of life, and well-being every 3 months. Daily seizure counts were converted to obtain cumulative seizure frequencies over 28-day periods.

Of the 25 original participants, six discontinued trial participation before the end of follow-up, four of whom left the study due to difficulty with dog care and training.

Participants receiving usual care reported an average of 115 seizures per 28-day period, while those with trained service dogs recorded 73 seizures in the same period, or a 37% difference between groups.

Researchers found that participants had an average of 31% fewer seizures during the past 3 months when they had seizure dogs, with seven participants achieving a 50%-100% reduction in seizures.

The number of seizure-free days increased from an average of 11 days per 28-day period before receiving a service dog to 15 days after working with a dog.

Scores on the EQ-5D-5L, which measures perceived health problems, decreased on average by 2.5% per consecutive 28-day period with the intervention, reflecting an increase in generic health-related quality of life (0.975; 95% CI, 0.954-0.997).

“These findings show that seizure dogs can help people with epilepsy,” said Ms. van Hezik-Wester. “However, we also found that this partnership with seizure dogs might not be the right fit for everyone, as some people discontinued their participation in this program. More research is needed to better understand which people can benefit from working with seizure dogs.”
 

Enhanced Quality of Life

In an accompanying editorial, Amir Mbonde, MB, and Amy Crepeau, MD, of Mayo Clinic in Phoenix, Arizona, noted the findings add to a growing body of work on the effectiveness of service dogs in reducing seizure frequency.

“In addition to improved seizure control, the EPISODE study demonstrated the benefit of seizure dogs in enhancing the quality of life for patients, a crucial component of comprehensive epilepsy care,” they wrote.

In prior studies, seizure dogs have identified an odor that a person emits before a seizure in up to 97% of people, they noted, adding that this ability “offers immense clinical benefits to people with epilepsy, enhancing their independence, social engagement, employment opportunities, self-confidence, and thus quality of life.”

Study limitations include its small sample size and high attrition rate.

The study was funded by the Netherlands Organization for Health Research and Development and Innovatiefonds Zorgverzekeraars.

A version of this article appeared on Medscape.com.

Working with medically trained service dogs is associated with a 31% reduction in seizures compared with usual care in treatment-resistant epilepsy, a new study showed.

Investigators speculate that the dogs may ease participants’ stress, leading to a decrease in seizure frequency, although they note this relationship warrants more study.

“Despite the development of numerous antiseizure medications over the past 15 years, up to 30% of people with epilepsy experience persistent seizures,” study author Valérie van Hezik-Wester, MSc, of Erasmus University Rotterdam, Rotterdam, the Netherlands, said in a press release.

The unpredictable nature of seizures is one of the most disabling aspects of epilepsy, Ms. Hezik-Wester added. Seizure dogs are trained to recognize seizures and respond when they occur.

“The tasks that these dogs perform, along with their companionship, may reduce seizure-related anxiety, also potentially reducing seizures caused by stress, the most common trigger for seizures,” she said.

The findings were published online in Neurology.
 

Improve Quality of Life

The study included 25 individuals with medically refractory epilepsy who had an average of two or more seizures per week, with seizure characteristics associated with a high risk for injuries or dysfunction. They also had to be able to care for a service dog.

All were observed under usual care, which included antiseizure medications, neurostimulation devices, and other supportive therapies. Participants could then choose to work with a service dog that had completed socialization and obedience training or be assigned a puppy they would train at home.

The median follow-up was 19 months with usual care and 12 months with the intervention. Participants recorded seizure activity in diaries and completed surveys on seizure severity, quality of life, and well-being every 3 months. Daily seizure counts were converted to obtain cumulative seizure frequencies over 28-day periods.

Of the 25 original participants, six discontinued trial participation before the end of follow-up, four of whom left the study due to difficulty with dog care and training.

Participants receiving usual care reported an average of 115 seizures per 28-day period, while those with trained service dogs recorded 73 seizures in the same period, or a 37% difference between groups.

Researchers found that participants had an average of 31% fewer seizures during the past 3 months when they had seizure dogs, with seven participants achieving a 50%-100% reduction in seizures.

The number of seizure-free days increased from an average of 11 days per 28-day period before receiving a service dog to 15 days after working with a dog.

Scores on the EQ-5D-5L, which measures perceived health problems, decreased on average by 2.5% per consecutive 28-day period with the intervention, reflecting an increase in generic health-related quality of life (0.975; 95% CI, 0.954-0.997).

“These findings show that seizure dogs can help people with epilepsy,” said Ms. van Hezik-Wester. “However, we also found that this partnership with seizure dogs might not be the right fit for everyone, as some people discontinued their participation in this program. More research is needed to better understand which people can benefit from working with seizure dogs.”
 

Enhanced Quality of Life

In an accompanying editorial, Amir Mbonde, MB, and Amy Crepeau, MD, of Mayo Clinic in Phoenix, Arizona, noted the findings add to a growing body of work on the effectiveness of service dogs in reducing seizure frequency.

“In addition to improved seizure control, the EPISODE study demonstrated the benefit of seizure dogs in enhancing the quality of life for patients, a crucial component of comprehensive epilepsy care,” they wrote.

In prior studies, seizure dogs have identified an odor that a person emits before a seizure in up to 97% of people, they noted, adding that this ability “offers immense clinical benefits to people with epilepsy, enhancing their independence, social engagement, employment opportunities, self-confidence, and thus quality of life.”

Study limitations include its small sample size and high attrition rate.

The study was funded by the Netherlands Organization for Health Research and Development and Innovatiefonds Zorgverzekeraars.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167265</fileName> <TBEID>0C04EFC6.SIG</TBEID> <TBUniqueIdentifier>MD_0C04EFC6</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>Seizure Dogs</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240312T132530</QCDate> <firstPublished>20240312T133157</firstPublished> <LastPublished>20240312T133157</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240312T133157</CMSDate> <articleSource>FROM NEUROLOGY</articleSource> <facebookInfo/> <meetingNumber/> <byline>Eve Bender</byline> <bylineText>EVE BENDER</bylineText> <bylineFull>EVE BENDER</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Working with medically trained service dogs is associated with a 31% reduction in seizures compared with usual care in treatment-resistant epilepsy</metaDescription> <articlePDF/> <teaserImage/> <teaser>The dogs may ease participants’ stress, leading to a decrease in seizure frequency, although they note this relationship warrants more study.</teaser> <title>Service Dogs Lead to Fewer Seizures in Treatment-Resistant Epilepsy</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>erc</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>FP</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>Copyright 2017 Frontline Medical News</copyrightStatement> </publicationData> <publicationData> <publicationCode>IM</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term>356</term> <term>15</term> <term>21</term> <term canonical="true">22</term> </publications> <sections> <term>39313</term> <term>86</term> <term canonical="true">27970</term> </sections> <topics> <term canonical="true">211</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Service Dogs Lead to Fewer Seizures in Treatment-Resistant Epilepsy</title> <deck/> </itemMeta> <itemContent> <p><span class="tag metaDescription">Working with medically trained service dogs is associated with a 31% reduction in seizures compared with usual care in treatment-resistant epilepsy</span>, a new study showed.</p> <p>Investigators speculate that the dogs may ease participants’ stress, leading to a decrease in seizure frequency, although they note this relationship warrants more study.<br/><br/>“Despite the development of numerous antiseizure medications over the past 15 years, up to 30% of people with epilepsy experience persistent seizures,” study author Valérie van Hezik-Wester, MSc, of Erasmus University Rotterdam, Rotterdam, the Netherlands, said in a press release.<br/><br/>The unpredictable nature of seizures is one of the most disabling aspects of epilepsy, Ms. Hezik-Wester added. Seizure dogs are trained to recognize seizures and respond when they occur.<br/><br/>“The tasks that these dogs perform, along with their companionship, may reduce seizure-related anxiety, also potentially reducing seizures caused by stress, the most common trigger for seizures,” she said.<br/><br/>The findings were <span class="Hyperlink"><a href="https://www.neurology.org/doi/10.1212/WNL.0000000000209178">published online</a></span> in <em>Neurology</em>.<br/><br/></p> <h2>Improve Quality of Life</h2> <p>The study included 25 individuals with medically refractory epilepsy who had an average of two or more seizures per week, with seizure characteristics associated with a high risk for injuries or dysfunction. They also had to be able to care for a service dog.<br/><br/>All were observed under usual care, which included antiseizure medications, neurostimulation devices, and other supportive therapies. Participants could then choose to work with a service dog that had completed socialization and obedience training or be assigned a puppy they would train at home.<br/><br/>The median follow-up was 19 months with usual care and 12 months with the intervention. Participants recorded seizure activity in diaries and completed surveys on seizure severity, quality of life, and well-being every 3 months. Daily seizure counts were converted to obtain cumulative seizure frequencies over 28-day periods.<br/><br/>Of the 25 original participants, six discontinued trial participation before the end of follow-up, four of whom left the study due to difficulty with dog care and training.<br/><br/>Participants receiving usual care reported an average of 115 seizures per 28-day period, while those with trained service dogs recorded 73 seizures in the same period, or a 37% difference between groups.<br/><br/>Researchers found that participants had an average of 31% fewer seizures during the past 3 months when they had seizure dogs, with seven participants achieving a 50%-100% reduction in seizures.<br/><br/>The number of seizure-free days increased from an average of 11 days per 28-day period before receiving a service dog to 15 days after working with a dog.<br/><br/>Scores on the EQ-5D-5L, which measures perceived health problems, decreased on average by 2.5% per consecutive 28-day period with the intervention, reflecting an increase in generic health-related quality of life (0.975; 95% CI, 0.954-0.997).<br/><br/>“These findings show that seizure dogs can help people with epilepsy,” said Ms. van Hezik-Wester. “However, we also found that this partnership with seizure dogs might not be the right fit for everyone, as some people discontinued their participation in this program. More research is needed to better understand which people can benefit from working with seizure dogs.”<br/><br/></p> <h2>Enhanced Quality of Life</h2> <p>In an accompanying <span class="Hyperlink"><a href="https://www.neurology.org/doi/10.1212/WNL.0000000000209255">editorial</a></span>, Amir Mbonde, MB, and Amy Crepeau, MD, of Mayo Clinic in Phoenix, Arizona, noted the findings add to a growing body of work on the effectiveness of service dogs in reducing seizure frequency.<br/><br/>“In addition to improved seizure control, the EPISODE study demonstrated the benefit of seizure dogs in enhancing the quality of life for patients, a crucial component of comprehensive epilepsy care,” they wrote.<br/><br/>In prior studies, seizure dogs have identified an odor that a person emits before a seizure in up to 97% of people, they noted, adding that this ability “offers immense clinical benefits to people with epilepsy, enhancing their independence, social engagement, employment opportunities, self-confidence, and thus quality of life.”<br/><br/>Study limitations include its small sample size and high attrition rate.<br/><br/>The study was funded by the Netherlands Organization for Health Research and Development and Innovatiefonds Zorgverzekeraars.<span class="end"/> </p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/service-dogs-lead-fewer-seizures-resistant-epilepsy-2024a10004mc">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM NEUROLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Seizure Risk Is Nearly Double in Patients With MS

Article Type
Changed
Wed, 03/06/2024 - 16:53

 

TOPLINE:

Patients with multiple sclerosis (MS) have almost double the risk for seizures, with the risk even greater with sphingosine-1-phosphate receptor (S1PR) modulators, results of a new meta-analysis of randomized controlled trials (RCTs) suggest. Those with a progressive disease phenotype are at particularly high seizure risk.

METHODOLOGY:

  • The meta-analysis included 63 phase 3 RCTs with 53,535 patients.
  • Most of the studies included in the meta-analysis investigated disease-modifying treatments compared with placebo or an active comparator such as interferon beta, teriflunomide, and dimethyl fumarate, in terms of relapse rate and/or disability progression.
  • Researchers extracted relevant information from studies, including MS subtype (clinically isolated syndrome, relapsing-remitting, primary progressive, or secondary progressive MS), mean Expanded Disability Status Scale (EDSS) score, lesion volume on T2-hyperintense sequence, normalized brain volume, and number of seizures or epilepsy events.
  • They calculated the pooled effect size of studies on the incidence rate of seizure or epilepsy as the number of events per patient-years and explored which variables influenced the pooled effect size.

TAKEAWAY:

  • A total of 120 patients experienced epileptic seizure events over a median follow-up of 2 years, resulting in a pooled incidence rate of 68.0 (95% CI, 49.1-86.9) per 100,000 patient-years, which investigators noted is significantly higher than the general population rate of 34.6.
  • Higher seizure incidence rates were found among patients with progressive disease courses, longer time since clinical onset, higher EDSS scores, and lower normalized brain volume; age and T2 lesion volume did not affect the pooled effect size.
  • Patients treated with S1PR modulators (fingolimod, ozanimod, ponesimod, and siponimod) had more than double the risk for seizure compared with placebo or comparators (estimated incident seizure risk ratio, 2.45; P = .008).

IN PRACTICE:

“Our findings underscore epilepsy as a significant comorbidity in MS and emphasize the necessity for further research into its triggers, preventive measures and treatment strategies,” the authors wrote.

SOURCE:

The study, led by Valeria Pozzilli, Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Campus Bio-Medico University, Roma, Italy, was published online in the Journal of Neurology, Neurosurgery, and Psychiatry.

LIMITATIONS:

As none of the included RCTs considered epilepsy an exclusion criterion, patients with comorbid epilepsy may have been enrolled in these studies. There was significant diversity in reporting of adverse events across studies. While this study’s statistical methodology was robust, the findings can’t be applied directly to individuals due to the risk for ecological fallacy.

DISCLOSURES:

Pozzilli had no relevant conflicts of interests. See paper for disclosures of other authors.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Patients with multiple sclerosis (MS) have almost double the risk for seizures, with the risk even greater with sphingosine-1-phosphate receptor (S1PR) modulators, results of a new meta-analysis of randomized controlled trials (RCTs) suggest. Those with a progressive disease phenotype are at particularly high seizure risk.

METHODOLOGY:

  • The meta-analysis included 63 phase 3 RCTs with 53,535 patients.
  • Most of the studies included in the meta-analysis investigated disease-modifying treatments compared with placebo or an active comparator such as interferon beta, teriflunomide, and dimethyl fumarate, in terms of relapse rate and/or disability progression.
  • Researchers extracted relevant information from studies, including MS subtype (clinically isolated syndrome, relapsing-remitting, primary progressive, or secondary progressive MS), mean Expanded Disability Status Scale (EDSS) score, lesion volume on T2-hyperintense sequence, normalized brain volume, and number of seizures or epilepsy events.
  • They calculated the pooled effect size of studies on the incidence rate of seizure or epilepsy as the number of events per patient-years and explored which variables influenced the pooled effect size.

TAKEAWAY:

  • A total of 120 patients experienced epileptic seizure events over a median follow-up of 2 years, resulting in a pooled incidence rate of 68.0 (95% CI, 49.1-86.9) per 100,000 patient-years, which investigators noted is significantly higher than the general population rate of 34.6.
  • Higher seizure incidence rates were found among patients with progressive disease courses, longer time since clinical onset, higher EDSS scores, and lower normalized brain volume; age and T2 lesion volume did not affect the pooled effect size.
  • Patients treated with S1PR modulators (fingolimod, ozanimod, ponesimod, and siponimod) had more than double the risk for seizure compared with placebo or comparators (estimated incident seizure risk ratio, 2.45; P = .008).

IN PRACTICE:

“Our findings underscore epilepsy as a significant comorbidity in MS and emphasize the necessity for further research into its triggers, preventive measures and treatment strategies,” the authors wrote.

SOURCE:

The study, led by Valeria Pozzilli, Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Campus Bio-Medico University, Roma, Italy, was published online in the Journal of Neurology, Neurosurgery, and Psychiatry.

LIMITATIONS:

As none of the included RCTs considered epilepsy an exclusion criterion, patients with comorbid epilepsy may have been enrolled in these studies. There was significant diversity in reporting of adverse events across studies. While this study’s statistical methodology was robust, the findings can’t be applied directly to individuals due to the risk for ecological fallacy.

DISCLOSURES:

Pozzilli had no relevant conflicts of interests. See paper for disclosures of other authors.

A version of this article appeared on Medscape.com.

 

TOPLINE:

Patients with multiple sclerosis (MS) have almost double the risk for seizures, with the risk even greater with sphingosine-1-phosphate receptor (S1PR) modulators, results of a new meta-analysis of randomized controlled trials (RCTs) suggest. Those with a progressive disease phenotype are at particularly high seizure risk.

METHODOLOGY:

  • The meta-analysis included 63 phase 3 RCTs with 53,535 patients.
  • Most of the studies included in the meta-analysis investigated disease-modifying treatments compared with placebo or an active comparator such as interferon beta, teriflunomide, and dimethyl fumarate, in terms of relapse rate and/or disability progression.
  • Researchers extracted relevant information from studies, including MS subtype (clinically isolated syndrome, relapsing-remitting, primary progressive, or secondary progressive MS), mean Expanded Disability Status Scale (EDSS) score, lesion volume on T2-hyperintense sequence, normalized brain volume, and number of seizures or epilepsy events.
  • They calculated the pooled effect size of studies on the incidence rate of seizure or epilepsy as the number of events per patient-years and explored which variables influenced the pooled effect size.

TAKEAWAY:

  • A total of 120 patients experienced epileptic seizure events over a median follow-up of 2 years, resulting in a pooled incidence rate of 68.0 (95% CI, 49.1-86.9) per 100,000 patient-years, which investigators noted is significantly higher than the general population rate of 34.6.
  • Higher seizure incidence rates were found among patients with progressive disease courses, longer time since clinical onset, higher EDSS scores, and lower normalized brain volume; age and T2 lesion volume did not affect the pooled effect size.
  • Patients treated with S1PR modulators (fingolimod, ozanimod, ponesimod, and siponimod) had more than double the risk for seizure compared with placebo or comparators (estimated incident seizure risk ratio, 2.45; P = .008).

IN PRACTICE:

“Our findings underscore epilepsy as a significant comorbidity in MS and emphasize the necessity for further research into its triggers, preventive measures and treatment strategies,” the authors wrote.

SOURCE:

The study, led by Valeria Pozzilli, Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Campus Bio-Medico University, Roma, Italy, was published online in the Journal of Neurology, Neurosurgery, and Psychiatry.

LIMITATIONS:

As none of the included RCTs considered epilepsy an exclusion criterion, patients with comorbid epilepsy may have been enrolled in these studies. There was significant diversity in reporting of adverse events across studies. While this study’s statistical methodology was robust, the findings can’t be applied directly to individuals due to the risk for ecological fallacy.

DISCLOSURES:

Pozzilli had no relevant conflicts of interests. See paper for disclosures of other authors.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167189</fileName> <TBEID>0C04EE10.SIG</TBEID> <TBUniqueIdentifier>MD_0C04EE10</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>Seizures &amp; MS</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240306T164628</QCDate> <firstPublished>20240306T165102</firstPublished> <LastPublished>20240306T165102</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240306T165102</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Pauline Anderson</byline> <bylineText>PAULINE ANDERSON</bylineText> <bylineFull>PAULINE ANDERSON</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Patients with multiple sclerosis (MS) have almost double the risk for seizures, with the risk even greater with sphingosine-1-phosphate receptor (S1PR) modulato</metaDescription> <articlePDF/> <teaserImage/> <teaser>Those with a progressive disease phenotype are at particularly high seizure risk.</teaser> <title>Seizure Risk Is Nearly Double in Patients With MS</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>msrc</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>erc</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>59347</term> <term>356</term> </publications> <sections> <term>39313</term> <term canonical="true">86</term> </sections> <topics> <term canonical="true">251</term> <term>211</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Seizure Risk Is Nearly Double in Patients With MS</title> <deck/> </itemMeta> <itemContent> <h2>TOPLINE:</h2> <p><span class="tag metaDescription">Patients with multiple sclerosis (MS) have almost double the risk for seizures, with the risk even greater with sphingosine-1-phosphate receptor (S1PR) modulators</span>, results of a new meta-analysis of randomized controlled trials (RCTs) suggest. Those with a progressive disease phenotype are at particularly high seizure risk.</p> <h2>METHODOLOGY:</h2> <ul class="body"> <li>The meta-analysis included 63 phase 3 RCTs with 53,535 patients.</li> <li>Most of the studies included in the meta-analysis investigated disease-modifying treatments compared with placebo or an active comparator such as interferon beta, teriflunomide, and dimethyl fumarate, in terms of relapse rate and/or disability progression.</li> <li>Researchers extracted relevant information from studies, including MS subtype (clinically isolated syndrome, relapsing-remitting, primary progressive, or secondary progressive MS), mean Expanded Disability Status Scale (EDSS) score, lesion volume on T2-hyperintense sequence, normalized brain volume, and number of seizures or epilepsy events.</li> <li>They calculated the pooled effect size of studies on the incidence rate of seizure or epilepsy as the number of events per patient-years and explored which variables influenced the pooled effect size.</li> </ul> <h2>TAKEAWAY:</h2> <ul class="body"> <li>A total of 120 patients experienced epileptic seizure events over a median follow-up of 2 years, resulting in a pooled incidence rate of 68.0 (95% CI, 49.1-86.9) per 100,000 patient-years, which investigators noted is significantly higher than the general population rate of 34.6.</li> <li>Higher seizure incidence rates were found among patients with progressive disease courses, longer time since clinical onset, higher EDSS scores, and lower normalized brain volume; age and T2 lesion volume did not affect the pooled effect size.</li> <li>Patients treated with S1PR modulators (fingolimod, ozanimod, ponesimod, and siponimod) had more than double the risk for seizure compared with placebo or comparators (estimated incident seizure risk ratio, 2.45; <em>P</em> = .008).</li> </ul> <h2>IN PRACTICE:</h2> <p>“Our findings underscore epilepsy as a significant comorbidity in MS and emphasize the necessity for further research into its triggers, preventive measures and treatment strategies,” the authors wrote.</p> <h2>SOURCE:</h2> <p>The study, led by Valeria Pozzilli, Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Campus Bio-Medico University, Roma, Italy, was <a href="https://jnnp.bmj.com/content/early/2024/02/21/jnnp-2023-332996">published online</a> in the Journal of <em>Neurology, Neurosurgery, and Psychiatry</em>.</p> <h2>LIMITATIONS:</h2> <p>As none of the included RCTs considered epilepsy an exclusion criterion, patients with comorbid epilepsy may have been enrolled in these studies. There was significant diversity in reporting of adverse events across studies. While this study’s statistical methodology was robust, the findings can’t be applied directly to individuals due to the risk for ecological fallacy.</p> <h2>DISCLOSURES:</h2> <p>Pozzilli had no relevant conflicts of interests. See paper for disclosures of other authors.</p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/seizure-risk-nearly-double-patients-ms-2024a10004as">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New, Updated Guidelines for Comprehensive Epilepsy Care

Article Type
Changed
Wed, 02/07/2024 - 10:29

The first updated guidelines for specialized epilepsy centers in a decade reflect a shift toward addressing patients’ overall well-being, including recommendations for genetic testing and counseling, mental health screening, and greater attention to special-needs populations. 

The guidelines — the first from the National Association of Epilepsy Centers (NAEC) in a decade — describe the comprehensive services and resources specialized epilepsy centers should provide to improve quality of care for people living with epilepsy.

“In addition to advances in medicine, there has been a shift toward addressing overall well-being beyond seizure management,” Fred A. Lado, MD, PhD, NAEC president and guideline panel cochair, said in a news release. “This includes care for comorbid conditions like anxiety and depression, enhanced communication between the patient and care team, and addressing health disparities in the epilepsy community.

The guidance was developed by a panel of multidisciplinary experts, which is the first time that the NAEC has gone beyond the field of neurology to seek input from other medical specialists and allied health personnel, the panel noted. 

“Expanded guidelines are also sorely needed to help centers and hospitals obtain the resources to provide this level of comprehensive care,” said Dr. Lado, regional director of epilepsy and professor of neurology at Zucker School of Medicine at Hofstra/Northwell in Hempstead, New York. 

An executive summary of the guidelines was published online in Neurology
 

A Multidisciplinary Approach

Epilepsy is one of the most common chronic neurologic conditions worldwide, affecting an estimated 3.4 million people in the United States alone. Recurring seizures can be debilitating and, in some cases, life-threatening. 

To update epilepsy care guidelines, an expert panel of 41 stakeholders with diverse expertise evaluated the latest evidence and reached consensus on 52 recommendations spanning a range of services that make up high-quality epilepsy care. 

“This is exhibited in a greater emphasis on multidisciplinary care conferences, screening for comorbidities of epilepsy, and providing access to other specialty services in addition to the core epilepsy center components of outpatient care, diagnostic procedures, and epilepsy surgery,” they wrote. 

For the first time, the guidelines advise specialized epilepsy centers to offer genetic testing and counseling, provide more education and communication for patients, give greater attention to special-needs populations, employ a care coordinator to organize and facilitate multidisciplinary care, provide mental health screening, and address health disparities and inequities.

“All recommendations quickly reached consensus despite there being such a diverse panel of stakeholders, which emphasizes that the recommendations reflect the important elements of healthcare services that should be in place for an epilepsy center to provide the highest quality of care,” said Susan Arnold, MD, guideline panel co-chair and a pediatric epileptologist at Yale University School of Medicine, New Haven, Connecticut.

“But epilepsy centers will need the resources to provide this comprehensive level of care. We hope the guidelines will help increase health insurer and institutional support and recognition of these recommendations,” Dr. Arnold added. 

The guidelines were funded by NAEC. Dr. Lado has no relevant disclosures. Dr. Arnold holds stock in Pfizer. A complete list of disclosures for the guideline panel is available with the original article. 
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

The first updated guidelines for specialized epilepsy centers in a decade reflect a shift toward addressing patients’ overall well-being, including recommendations for genetic testing and counseling, mental health screening, and greater attention to special-needs populations. 

The guidelines — the first from the National Association of Epilepsy Centers (NAEC) in a decade — describe the comprehensive services and resources specialized epilepsy centers should provide to improve quality of care for people living with epilepsy.

“In addition to advances in medicine, there has been a shift toward addressing overall well-being beyond seizure management,” Fred A. Lado, MD, PhD, NAEC president and guideline panel cochair, said in a news release. “This includes care for comorbid conditions like anxiety and depression, enhanced communication between the patient and care team, and addressing health disparities in the epilepsy community.

The guidance was developed by a panel of multidisciplinary experts, which is the first time that the NAEC has gone beyond the field of neurology to seek input from other medical specialists and allied health personnel, the panel noted. 

“Expanded guidelines are also sorely needed to help centers and hospitals obtain the resources to provide this level of comprehensive care,” said Dr. Lado, regional director of epilepsy and professor of neurology at Zucker School of Medicine at Hofstra/Northwell in Hempstead, New York. 

An executive summary of the guidelines was published online in Neurology
 

A Multidisciplinary Approach

Epilepsy is one of the most common chronic neurologic conditions worldwide, affecting an estimated 3.4 million people in the United States alone. Recurring seizures can be debilitating and, in some cases, life-threatening. 

To update epilepsy care guidelines, an expert panel of 41 stakeholders with diverse expertise evaluated the latest evidence and reached consensus on 52 recommendations spanning a range of services that make up high-quality epilepsy care. 

“This is exhibited in a greater emphasis on multidisciplinary care conferences, screening for comorbidities of epilepsy, and providing access to other specialty services in addition to the core epilepsy center components of outpatient care, diagnostic procedures, and epilepsy surgery,” they wrote. 

For the first time, the guidelines advise specialized epilepsy centers to offer genetic testing and counseling, provide more education and communication for patients, give greater attention to special-needs populations, employ a care coordinator to organize and facilitate multidisciplinary care, provide mental health screening, and address health disparities and inequities.

“All recommendations quickly reached consensus despite there being such a diverse panel of stakeholders, which emphasizes that the recommendations reflect the important elements of healthcare services that should be in place for an epilepsy center to provide the highest quality of care,” said Susan Arnold, MD, guideline panel co-chair and a pediatric epileptologist at Yale University School of Medicine, New Haven, Connecticut.

“But epilepsy centers will need the resources to provide this comprehensive level of care. We hope the guidelines will help increase health insurer and institutional support and recognition of these recommendations,” Dr. Arnold added. 

The guidelines were funded by NAEC. Dr. Lado has no relevant disclosures. Dr. Arnold holds stock in Pfizer. A complete list of disclosures for the guideline panel is available with the original article. 
 

A version of this article appeared on Medscape.com.

The first updated guidelines for specialized epilepsy centers in a decade reflect a shift toward addressing patients’ overall well-being, including recommendations for genetic testing and counseling, mental health screening, and greater attention to special-needs populations. 

The guidelines — the first from the National Association of Epilepsy Centers (NAEC) in a decade — describe the comprehensive services and resources specialized epilepsy centers should provide to improve quality of care for people living with epilepsy.

“In addition to advances in medicine, there has been a shift toward addressing overall well-being beyond seizure management,” Fred A. Lado, MD, PhD, NAEC president and guideline panel cochair, said in a news release. “This includes care for comorbid conditions like anxiety and depression, enhanced communication between the patient and care team, and addressing health disparities in the epilepsy community.

The guidance was developed by a panel of multidisciplinary experts, which is the first time that the NAEC has gone beyond the field of neurology to seek input from other medical specialists and allied health personnel, the panel noted. 

“Expanded guidelines are also sorely needed to help centers and hospitals obtain the resources to provide this level of comprehensive care,” said Dr. Lado, regional director of epilepsy and professor of neurology at Zucker School of Medicine at Hofstra/Northwell in Hempstead, New York. 

An executive summary of the guidelines was published online in Neurology
 

A Multidisciplinary Approach

Epilepsy is one of the most common chronic neurologic conditions worldwide, affecting an estimated 3.4 million people in the United States alone. Recurring seizures can be debilitating and, in some cases, life-threatening. 

To update epilepsy care guidelines, an expert panel of 41 stakeholders with diverse expertise evaluated the latest evidence and reached consensus on 52 recommendations spanning a range of services that make up high-quality epilepsy care. 

“This is exhibited in a greater emphasis on multidisciplinary care conferences, screening for comorbidities of epilepsy, and providing access to other specialty services in addition to the core epilepsy center components of outpatient care, diagnostic procedures, and epilepsy surgery,” they wrote. 

For the first time, the guidelines advise specialized epilepsy centers to offer genetic testing and counseling, provide more education and communication for patients, give greater attention to special-needs populations, employ a care coordinator to organize and facilitate multidisciplinary care, provide mental health screening, and address health disparities and inequities.

“All recommendations quickly reached consensus despite there being such a diverse panel of stakeholders, which emphasizes that the recommendations reflect the important elements of healthcare services that should be in place for an epilepsy center to provide the highest quality of care,” said Susan Arnold, MD, guideline panel co-chair and a pediatric epileptologist at Yale University School of Medicine, New Haven, Connecticut.

“But epilepsy centers will need the resources to provide this comprehensive level of care. We hope the guidelines will help increase health insurer and institutional support and recognition of these recommendations,” Dr. Arnold added. 

The guidelines were funded by NAEC. Dr. Lado has no relevant disclosures. Dr. Arnold holds stock in Pfizer. A complete list of disclosures for the guideline panel is available with the original article. 
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>166843</fileName> <TBEID>0C04E6C5.SIG</TBEID> <TBUniqueIdentifier>MD_0C04E6C5</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>new epilepsy care guidelines</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240207T100123</QCDate> <firstPublished>20240207T102647</firstPublished> <LastPublished>20240207T102647</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240207T102647</CMSDate> <articleSource>FROM NEUROLOGY</articleSource> <facebookInfo/> <meetingNumber/> <byline>Megan Brooks</byline> <bylineText>MEGAN BROOKS</bylineText> <bylineFull>MEGAN BROOKS</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>The first updated guidelines for specialized epilepsy centers in a decade reflect a shift toward addressing patients’ overall well-being, including recommendati</metaDescription> <articlePDF/> <teaserImage/> <teaser>“In addition to advances in medicine, there has been a shift toward addressing overall well-being beyond seizure management.”</teaser> <title>New, Updated Guidelines for Comprehensive Epilepsy Care</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>erc</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>FP</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>Copyright 2017 Frontline Medical News</copyrightStatement> </publicationData> <publicationData> <publicationCode>IM</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>356</term> <term>15</term> <term>21</term> </publications> <sections> <term>39313</term> <term>86</term> <term canonical="true">27970</term> </sections> <topics> <term canonical="true">211</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>New, Updated Guidelines for Comprehensive Epilepsy Care</title> <deck/> </itemMeta> <itemContent> <p><span class="tag metaDescription">The first updated guidelines for specialized epilepsy centers in a decade reflect a shift toward addressing patients’ overall well-being, including recommendations for genetic testing and counseling, mental health screening, and greater attention to special-needs populations.</span> </p> <p>The guidelines — the first from the National Association of Epilepsy Centers (NAEC) in a decade — describe the comprehensive services and resources specialized epilepsy centers should provide to improve quality of care for people living with epilepsy.<br/><br/>“In addition to advances in medicine, there has been a shift toward addressing overall well-being beyond seizure management,” Fred A. Lado, MD, PhD, NAEC president and guideline panel cochair, said in a news release. “This includes care for comorbid conditions like anxiety and depression, enhanced communication between the patient and care team, and addressing health disparities in the epilepsy community.<br/><br/>The guidance was developed by a panel of multidisciplinary experts, which is the first time that the NAEC has gone beyond the field of neurology to seek input from other medical specialists and allied health personnel, the panel noted. <br/><br/>“Expanded guidelines are also sorely needed to help centers and hospitals obtain the resources to provide this level of comprehensive care,” said Dr. Lado, regional director of epilepsy and professor of neurology at Zucker School of Medicine at Hofstra/Northwell in Hempstead, New York. <br/><br/>An executive summary of the guidelines was <span class="Hyperlink"><a href="https://n.neurology.org/lookup/doi/10.1212/WNL.0000000000208087">published online</a></span> in <em>Neurology</em>. <br/><br/></p> <h2>A Multidisciplinary Approach</h2> <p>Epilepsy is one of the most common chronic neurologic conditions worldwide, affecting an estimated 3.4 million people in the United States alone. Recurring seizures can be debilitating and, in some cases, life-threatening. <br/><br/>To update epilepsy care guidelines, an expert panel of 41 stakeholders with diverse expertise evaluated the latest evidence and reached consensus on 52 recommendations spanning a range of services that make up high-quality epilepsy care. <br/><br/>“This is exhibited in a greater emphasis on multidisciplinary care conferences, screening for comorbidities of epilepsy, and providing access to other specialty services in addition to the core epilepsy center components of outpatient care, diagnostic procedures, and <span class="Hyperlink">epilepsy surgery</span>,” they wrote. <br/><br/>For the first time, the guidelines advise specialized epilepsy centers to offer genetic testing and counseling, provide more education and communication for patients, give greater attention to special-needs populations, employ a care coordinator to organize and facilitate multidisciplinary care, provide mental health screening, and address health disparities and inequities.<br/><br/>“All recommendations quickly reached consensus despite there being such a diverse panel of stakeholders, which emphasizes that the recommendations reflect the important elements of healthcare services that should be in place for an epilepsy center to provide the highest quality of care,” said Susan Arnold, MD, guideline panel co-chair and a pediatric epileptologist at Yale University School of Medicine, New Haven, Connecticut.<br/><br/>“But epilepsy centers will need the resources to provide this comprehensive level of care. We hope the guidelines will help increase health insurer and institutional support and recognition of these recommendations,” Dr. Arnold added. <br/><br/>The guidelines were funded by NAEC. Dr. Lado has no relevant disclosures. Dr. Arnold holds stock in Pfizer. A complete list of disclosures for the guideline panel is available with the original article. <br/><br/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/new-updated-guidelines-comprehensive-epilepsy-care-2024a10002dx">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM NEUROLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Adequate Transition of Epilepsy Care from Pediatric to Adult Is Often Lacking

Article Type
Changed
Tue, 01/30/2024 - 09:41

When pediatric patients with epilepsy shift to adult care, inherent challenges are complicated by a near-total lack of efforts to smooth the transition, according to a recent survey. Many respondents received little to no information regarding the process, and many adults were still receiving care from family physicians or pediatric neurologists. The study was published online in Epilepsy & Behavior.

Room for Improvement

“We are not doing as good a job with planning for transition as we should,” said Elaine C. Wirrell, MD, who was not involved with the study. “It is not just a simple issue of sending your patient to an adult neurologist. Transition is a process that happens over time, so we need to do a better job getting our families ready for moving on to an adult provider.” Dr. Wirrell is director of pediatric epilepsy and professor of neurology at the Mayo Clinic in Rochester, Minnesota.

Wirrell_Elaine_C_MINN_web.jpg
Dr. Elaine C. Wirrell

Clumsy Transitions

Investigators distributed a 25-question survey to patients and caregivers who attended the 2019 Epilepsy Awareness Day at Disneyland, and through online support groups in North America. Among 58 responses, 32 came from patients between ages 12 and 17 years or their caregivers.

Despite attempts to recruit a diverse cross-section of respondents, most patients had severe epilepsy and comorbidities: 43% had daily or weekly seizures; 45% were on three or more antiseizure medications; and 74% had intellectual disabilities.

Many children with early-life epilepsies suffer from developmental and epileptic encephalopathy, which has associated non-seizure symptoms including learning challenges, behavioral issues, and other medical concerns, Dr. Wirrell said. Therefore, she said, finding a neurologist who treats adults — and has the expertise and interest to care for such patients — can be difficult.

“We’re seeing many patients not making that transition, or maybe not making it appropriately, so they’re not necessarily getting to the providers who have the most expertise in managing their epilepsy.” Among adults surveyed, 27% were still being followed by pediatric neurologists, and 35% were visiting family doctors for epilepsy-related treatment.

Because the needs of children with complex epilepsy can extend well beyond neurology, Dr. Wirrell added, managing such cases often requires multidisciplinary pediatric teams. “Finding that team on the adult side is more challenging.” As a result, she said, patients may transfer their neurology care without getting additional support for comorbidities such as mood disorders and learning disabilities.

The foregoing challenges are complicated by the fact that pediatric neurologists often lack the time (and in the United States, reimbursement) to adequately address the transition process, said Dr. Wirrell. Providers in freestanding children’s hospitals may face additional challenges coordinating with adult-care providers outside their facilities, she said.

“There’s also potentially a reluctance of both families and physicians to transition the patient on, because there’s concern that maybe there isn’t anybody on the adult side who is able to do as good a job as what they have on the pediatric side.”
 

 

 

Well-Coordinated Transitions Should Have No Surprises

Transition should be a planned, independence-promoting process that results in smooth, well-coordinated movement of pediatric patients into adult care — one without surprises or disconnections, the authors wrote. However, 55% of respondents never heard the term “transition” from any provider, even though 69% of patients were being treated in academic specialty centers.

Among 12- to 17-year-olds, 72% had never discussed transition with their healthcare team. That figure includes no 17-year-olds. Approximately 90% of respondents said they received sufficient time during healthcare visits, but 54% reported feeling stressed when moving from pediatric to adult care.

Given resource constraints in many pediatric epilepsy programs, the study authors recommended patient-empowerment tools such as a transition toolkit to help patients and families navigate the transition process even in places without formal transition programs.

“Many of these children are coming over with boatloads of medical records,” Dr. Wirrell said. “It’s not fair to the adult provider, who then has to go through all those records.” Instead, she said, pediatric teams should provide succinct summaries of relevant test results, medication side effects, prior treatments tried, and the like. “Those summaries are critically important so that we can get information to the person who needs it.”

Although successful transition requires significant coordination, she added, much of the process can often be handled by nonphysicians. “There are some very good nurse-led transition programs. Often, we can have a nurse providing education to the family and even potentially having a joint visit with an adult epilepsy nurse for complex patients.”

Pediatric providers also must know when to begin the transition process, Dr. Wirrell said. As soon as patients are 13 or 14 years old, she suggested discussing the process with them and their families every 6 to 12 months, covering specifics ranging from how to order medications to why adult patients may need power of attorney designees.

On a broader scale, said Dr. Wirrell, a smooth handoff requires planning. Fortunately, she said, the topic is becoming a significant priority for a growing number of children’s hospitals specific not only to epilepsy, but also to other chronic illnesses.

Dr. Wirrell is co–editor-in-chief for epilepsy.com. She reports no relevant financial interests.

Publications
Topics
Sections

When pediatric patients with epilepsy shift to adult care, inherent challenges are complicated by a near-total lack of efforts to smooth the transition, according to a recent survey. Many respondents received little to no information regarding the process, and many adults were still receiving care from family physicians or pediatric neurologists. The study was published online in Epilepsy & Behavior.

Room for Improvement

“We are not doing as good a job with planning for transition as we should,” said Elaine C. Wirrell, MD, who was not involved with the study. “It is not just a simple issue of sending your patient to an adult neurologist. Transition is a process that happens over time, so we need to do a better job getting our families ready for moving on to an adult provider.” Dr. Wirrell is director of pediatric epilepsy and professor of neurology at the Mayo Clinic in Rochester, Minnesota.

Wirrell_Elaine_C_MINN_web.jpg
Dr. Elaine C. Wirrell

Clumsy Transitions

Investigators distributed a 25-question survey to patients and caregivers who attended the 2019 Epilepsy Awareness Day at Disneyland, and through online support groups in North America. Among 58 responses, 32 came from patients between ages 12 and 17 years or their caregivers.

Despite attempts to recruit a diverse cross-section of respondents, most patients had severe epilepsy and comorbidities: 43% had daily or weekly seizures; 45% were on three or more antiseizure medications; and 74% had intellectual disabilities.

Many children with early-life epilepsies suffer from developmental and epileptic encephalopathy, which has associated non-seizure symptoms including learning challenges, behavioral issues, and other medical concerns, Dr. Wirrell said. Therefore, she said, finding a neurologist who treats adults — and has the expertise and interest to care for such patients — can be difficult.

“We’re seeing many patients not making that transition, or maybe not making it appropriately, so they’re not necessarily getting to the providers who have the most expertise in managing their epilepsy.” Among adults surveyed, 27% were still being followed by pediatric neurologists, and 35% were visiting family doctors for epilepsy-related treatment.

Because the needs of children with complex epilepsy can extend well beyond neurology, Dr. Wirrell added, managing such cases often requires multidisciplinary pediatric teams. “Finding that team on the adult side is more challenging.” As a result, she said, patients may transfer their neurology care without getting additional support for comorbidities such as mood disorders and learning disabilities.

The foregoing challenges are complicated by the fact that pediatric neurologists often lack the time (and in the United States, reimbursement) to adequately address the transition process, said Dr. Wirrell. Providers in freestanding children’s hospitals may face additional challenges coordinating with adult-care providers outside their facilities, she said.

“There’s also potentially a reluctance of both families and physicians to transition the patient on, because there’s concern that maybe there isn’t anybody on the adult side who is able to do as good a job as what they have on the pediatric side.”
 

 

 

Well-Coordinated Transitions Should Have No Surprises

Transition should be a planned, independence-promoting process that results in smooth, well-coordinated movement of pediatric patients into adult care — one without surprises or disconnections, the authors wrote. However, 55% of respondents never heard the term “transition” from any provider, even though 69% of patients were being treated in academic specialty centers.

Among 12- to 17-year-olds, 72% had never discussed transition with their healthcare team. That figure includes no 17-year-olds. Approximately 90% of respondents said they received sufficient time during healthcare visits, but 54% reported feeling stressed when moving from pediatric to adult care.

Given resource constraints in many pediatric epilepsy programs, the study authors recommended patient-empowerment tools such as a transition toolkit to help patients and families navigate the transition process even in places without formal transition programs.

“Many of these children are coming over with boatloads of medical records,” Dr. Wirrell said. “It’s not fair to the adult provider, who then has to go through all those records.” Instead, she said, pediatric teams should provide succinct summaries of relevant test results, medication side effects, prior treatments tried, and the like. “Those summaries are critically important so that we can get information to the person who needs it.”

Although successful transition requires significant coordination, she added, much of the process can often be handled by nonphysicians. “There are some very good nurse-led transition programs. Often, we can have a nurse providing education to the family and even potentially having a joint visit with an adult epilepsy nurse for complex patients.”

Pediatric providers also must know when to begin the transition process, Dr. Wirrell said. As soon as patients are 13 or 14 years old, she suggested discussing the process with them and their families every 6 to 12 months, covering specifics ranging from how to order medications to why adult patients may need power of attorney designees.

On a broader scale, said Dr. Wirrell, a smooth handoff requires planning. Fortunately, she said, the topic is becoming a significant priority for a growing number of children’s hospitals specific not only to epilepsy, but also to other chronic illnesses.

Dr. Wirrell is co–editor-in-chief for epilepsy.com. She reports no relevant financial interests.

When pediatric patients with epilepsy shift to adult care, inherent challenges are complicated by a near-total lack of efforts to smooth the transition, according to a recent survey. Many respondents received little to no information regarding the process, and many adults were still receiving care from family physicians or pediatric neurologists. The study was published online in Epilepsy & Behavior.

Room for Improvement

“We are not doing as good a job with planning for transition as we should,” said Elaine C. Wirrell, MD, who was not involved with the study. “It is not just a simple issue of sending your patient to an adult neurologist. Transition is a process that happens over time, so we need to do a better job getting our families ready for moving on to an adult provider.” Dr. Wirrell is director of pediatric epilepsy and professor of neurology at the Mayo Clinic in Rochester, Minnesota.

Wirrell_Elaine_C_MINN_web.jpg
Dr. Elaine C. Wirrell

Clumsy Transitions

Investigators distributed a 25-question survey to patients and caregivers who attended the 2019 Epilepsy Awareness Day at Disneyland, and through online support groups in North America. Among 58 responses, 32 came from patients between ages 12 and 17 years or their caregivers.

Despite attempts to recruit a diverse cross-section of respondents, most patients had severe epilepsy and comorbidities: 43% had daily or weekly seizures; 45% were on three or more antiseizure medications; and 74% had intellectual disabilities.

Many children with early-life epilepsies suffer from developmental and epileptic encephalopathy, which has associated non-seizure symptoms including learning challenges, behavioral issues, and other medical concerns, Dr. Wirrell said. Therefore, she said, finding a neurologist who treats adults — and has the expertise and interest to care for such patients — can be difficult.

“We’re seeing many patients not making that transition, or maybe not making it appropriately, so they’re not necessarily getting to the providers who have the most expertise in managing their epilepsy.” Among adults surveyed, 27% were still being followed by pediatric neurologists, and 35% were visiting family doctors for epilepsy-related treatment.

Because the needs of children with complex epilepsy can extend well beyond neurology, Dr. Wirrell added, managing such cases often requires multidisciplinary pediatric teams. “Finding that team on the adult side is more challenging.” As a result, she said, patients may transfer their neurology care without getting additional support for comorbidities such as mood disorders and learning disabilities.

The foregoing challenges are complicated by the fact that pediatric neurologists often lack the time (and in the United States, reimbursement) to adequately address the transition process, said Dr. Wirrell. Providers in freestanding children’s hospitals may face additional challenges coordinating with adult-care providers outside their facilities, she said.

“There’s also potentially a reluctance of both families and physicians to transition the patient on, because there’s concern that maybe there isn’t anybody on the adult side who is able to do as good a job as what they have on the pediatric side.”
 

 

 

Well-Coordinated Transitions Should Have No Surprises

Transition should be a planned, independence-promoting process that results in smooth, well-coordinated movement of pediatric patients into adult care — one without surprises or disconnections, the authors wrote. However, 55% of respondents never heard the term “transition” from any provider, even though 69% of patients were being treated in academic specialty centers.

Among 12- to 17-year-olds, 72% had never discussed transition with their healthcare team. That figure includes no 17-year-olds. Approximately 90% of respondents said they received sufficient time during healthcare visits, but 54% reported feeling stressed when moving from pediatric to adult care.

Given resource constraints in many pediatric epilepsy programs, the study authors recommended patient-empowerment tools such as a transition toolkit to help patients and families navigate the transition process even in places without formal transition programs.

“Many of these children are coming over with boatloads of medical records,” Dr. Wirrell said. “It’s not fair to the adult provider, who then has to go through all those records.” Instead, she said, pediatric teams should provide succinct summaries of relevant test results, medication side effects, prior treatments tried, and the like. “Those summaries are critically important so that we can get information to the person who needs it.”

Although successful transition requires significant coordination, she added, much of the process can often be handled by nonphysicians. “There are some very good nurse-led transition programs. Often, we can have a nurse providing education to the family and even potentially having a joint visit with an adult epilepsy nurse for complex patients.”

Pediatric providers also must know when to begin the transition process, Dr. Wirrell said. As soon as patients are 13 or 14 years old, she suggested discussing the process with them and their families every 6 to 12 months, covering specifics ranging from how to order medications to why adult patients may need power of attorney designees.

On a broader scale, said Dr. Wirrell, a smooth handoff requires planning. Fortunately, she said, the topic is becoming a significant priority for a growing number of children’s hospitals specific not only to epilepsy, but also to other chronic illnesses.

Dr. Wirrell is co–editor-in-chief for epilepsy.com. She reports no relevant financial interests.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>166746</fileName> <TBEID>0C04E4A2.SIG</TBEID> <TBUniqueIdentifier>MD_0C04E4A2</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>Epilepsy transition of care</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240129T140557</QCDate> <firstPublished>20240130T090516</firstPublished> <LastPublished>20240130T090516</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240130T090516</CMSDate> <articleSource>FROM EPILEPSY &amp; BEHAVIOR</articleSource> <facebookInfo/> <meetingNumber/> <byline>John Jesitus</byline> <bylineText>JOHN JESITUS</bylineText> <bylineFull>JOHN JESITUS</bylineFull> <bylineTitleText>MDedge News</bylineTitleText> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>When pediatric patients with epilepsy shift to adult care, inherent challenges are complicated by a near-total lack of efforts to smooth the transition</metaDescription> <articlePDF/> <teaserImage>300043</teaserImage> <teaser>“We are not doing as good a job with planning for transition as we should.”</teaser> <title>Adequate Transition of Epilepsy Care from Pediatric to Adult Is Often Lacking</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>erc</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>FP</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>Copyright 2017 Frontline Medical News</copyrightStatement> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>PN</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term>356</term> <term>15</term> <term canonical="true">22</term> <term>25</term> </publications> <sections> <term>39313</term> <term>86</term> <term canonical="true">27970</term> </sections> <topics> <term canonical="true">211</term> <term>271</term> <term>258</term> </topics> <links> <link> <itemClass qcode="ninat:picture"/> <altRep contenttype="image/jpeg">images/240125ff.jpg</altRep> <description role="drol:caption">Dr. Elaine C. Wirrell</description> <description role="drol:credit">Mayo Clinic</description> </link> </links> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Adequate Transition of Epilepsy Care from Pediatric to Adult Is Often Lacking</title> <deck/> </itemMeta> <itemContent> <p><span class="tag metaDescription">When pediatric patients with epilepsy shift to adult care, inherent challenges are complicated by a near-total lack of efforts to smooth the transition</span>, according to a recent survey. Many respondents received little to no information regarding the process, and many adults were still receiving care from family physicians or pediatric neurologists. The <span class="Hyperlink"><a href="https://www.epilepsybehavior.com/article/S1525-5050(24)00005-2/fulltext">study</a> </span>was published online in <em>Epilepsy &amp; Behavior</em>.</p> <h2>Room for Improvement</h2> <p>“We are not doing as good a job with planning for transition as we should,” said Elaine C. Wirrell, MD, who was not involved with the study. “It is not just a simple issue of sending your patient to an adult neurologist. Transition is a process that happens over time, so we need to do a better job getting our families ready for moving on to an adult provider.” Dr. Wirrell is director of pediatric epilepsy and professor of neurology at the Mayo Clinic in Rochester, Minnesota.[[{"fid":"300043","view_mode":"medstat_image_flush_right","fields":{"format":"medstat_image_flush_right","field_file_image_alt_text[und][0][value]":"Elaine C. Wirrell, MD, is director of pediatric epilepsy and professor of neurology at the Mayo Clinic in Rochester, Minnesota.","field_file_image_credit[und][0][value]":"Mayo Clinic","field_file_image_caption[und][0][value]":"Dr. Elaine C. Wirrell"},"type":"media","attributes":{"class":"media-element file-medstat_image_flush_right"}}]]</p> <h2>Clumsy Transitions</h2> <p>Investigators distributed a 25-question survey to patients and caregivers who attended the 2019 Epilepsy Awareness Day at Disneyland, and through online support groups in North America. Among 58 responses, 32 came from patients between ages 12 and 17 years or their caregivers. </p> <p>Despite attempts to recruit a diverse cross-section of respondents, most patients had severe epilepsy and comorbidities: 43% had daily or weekly seizures; 45% were on three or more antiseizure medications; and 74% had intellectual disabilities.<br/><br/>Many children with early-life epilepsies suffer from developmental and epileptic encephalopathy, which has associated non-seizure symptoms including learning challenges, behavioral issues, and other medical concerns, Dr. Wirrell said. Therefore, she said, finding a neurologist who treats adults — and has the expertise and interest to care for such patients — can be difficult. <br/><br/>“We’re seeing many patients not making that transition, or maybe not making it appropriately, so they’re not necessarily getting to the providers who have the most expertise in managing their epilepsy.” Among adults surveyed, 27% were still being followed by pediatric neurologists, and 35% were visiting family doctors for epilepsy-related treatment.<br/><br/>Because the needs of children with complex epilepsy can extend well beyond neurology, Dr. Wirrell added, managing such cases often requires multidisciplinary pediatric teams. “Finding that team on the adult side is more challenging.” As a result, she said, patients may transfer their neurology care without getting additional support for comorbidities such as mood disorders and learning disabilities.<br/><br/>The foregoing challenges are complicated by the fact that pediatric neurologists often lack the time (and in the United States, reimbursement) to adequately address the transition process, said Dr. Wirrell. Providers in freestanding children’s hospitals may face additional challenges coordinating with adult-care providers outside their facilities, she said.<br/><br/>“There’s also potentially a reluctance of both families and physicians to transition the patient on, because there’s concern that maybe there isn’t anybody on the adult side who is able to do as good a job as what they have on the pediatric side.”<br/><br/></p> <h2>Well-Coordinated Transitions Should Have No Surprises</h2> <p>Transition should be a planned, independence-promoting process that results in smooth, well-coordinated movement of pediatric patients into adult care — one without surprises or disconnections, the authors wrote. However, 55% of respondents never heard the term “transition” from any provider, even though 69% of patients were being treated in academic specialty centers. </p> <p>Among 12- to 17-year-olds, 72% had never discussed transition with their healthcare team. That figure includes no 17-year-olds. Approximately 90% of respondents said they received sufficient time during healthcare visits, but 54% reported feeling stressed when moving from pediatric to adult care. <br/><br/>Given resource constraints in many pediatric epilepsy programs, the study authors recommended patient-empowerment tools such as a <span class="Hyperlink"><a href="https://publications.aap.org/pediatrics/article-abstract/142/Supplement_2/S110/11564/A-Transition-Toolkit-for-Duchenne-Muscular?redirectedFrom=fulltext">transition toolkit</a></span> to help patients and families navigate the transition process even in places without formal transition programs.<br/><br/>“Many of these children are coming over with boatloads of medical records,” Dr. Wirrell said. “It’s not fair to the adult provider, who then has to go through all those records.” Instead, she said, pediatric teams should provide succinct summaries of relevant test results, medication side effects, prior treatments tried, and the like. “Those summaries are critically important so that we can get information to the person who needs it.”<br/><br/>Although successful transition requires significant coordination, she added, much of the process can often be handled by nonphysicians. “There are some very good nurse-led transition programs. Often, we can have a nurse providing education to the family and even potentially having a joint visit with an adult epilepsy nurse for complex patients.”<br/><br/>Pediatric providers also must know when to begin the transition process, Dr. Wirrell said. As soon as patients are 13 or 14 years old, she suggested discussing the process with them and their families every 6 to 12 months, covering specifics ranging from how to order medications to why adult patients may need power of attorney designees. <br/><br/>On a broader scale, said Dr. Wirrell, a smooth handoff requires planning. Fortunately, she said, the topic is becoming a significant priority for a growing number of children’s hospitals specific not only to epilepsy, but also to other chronic illnesses. <br/><br/>Dr. Wirrell is co–editor-in-chief for <span class="Hyperlink"><a href="http://epilepsy.com">epilepsy.com</a></span>. She reports no relevant financial interests.</p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM EPILEPSY & BEHAVIOR

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

With Proper Training, AI Can Be a Useful Tool in Epilepsy Management

Article Type
Changed
Wed, 01/17/2024 - 16:28

ORLANDO — Experts shed light on the applications, benefits, and pitfalls of artificial intelligence (AI) during the Merrit-Putnam Symposium at the annual meeting of the American Epilepsy Society (AES).

In a session titled “Artificial Intelligence Fundamentals and Breakthrough Applications in Epilepsy,” University of Pittsburgh neurologist and assistant professor Wesley Kerr, MD, PhD, provided an overview of AI as well its applications in neurology. He began by addressing perhaps one of the most controversial topics regarding AI in the medical community: clinicians’ fear of being replaced by technology.

“Artificial intelligence will not replace clinicians, but clinicians assisted by artificial intelligence will replace clinicians without artificial intelligence,” he told the audience.
 

To Optimize AI, Clinicians Must Lay the Proper Foundation

Dr. Kerr’s presentation focused on providing audience members with tools to help them evaluate new technologies, recognize benefits, and identify key costs and limitations associated with AI implementation and integration into clinical practice.

Before delving deeper, one must first understand basic terminology regarding AI. Without this knowledge, clinicians may inadvertently introduce bias or errata or fail to understand how to best leverage the technology to enhance the quality of the practice while improving patient outcomes.

Machine learning (ML) describes the process of using data to learn a specific task. Deep learning (DL) stacks multiple layers of ML to improve performance on the task. Lastly, generative AI generates content such as text, images, and media.

Utilizing AI effectively in clinical applications involves tapping into select features most related to prediction (for example, disease factors) and grouping features into categories based on measuring commonalities such as factor composition in a population. This information should be used in training data only.

Fully understanding ML/AI allows clinicians to use it as a diagnostic test by exploiting a combination of accuracy, sensitivity, and specificity, along with positive and negative predictive values.
 

Data Fidelity and Integrity Hinge on Optimal Data Inputs

In the case of epilepsy, calibration curves can provide practical guidance in terms of predicting impending seizures.

“ML/AI needs gold-standard labels for evaluation,” Dr. Kerr said. He went on to stress the importance of quality data inputs to optimize the fidelity of AI’s predictive analytics.

“If you input garbage, you’ll get garbage out,” he said. “So a lot of garbage going in means a lot of garbage out.”

Such “garbage” can result in missed or erroneous diagnoses, or even faulty predictions. Even when the data are complete, AI can draw incorrect conclusions based on trends for which it lacks proper context.

Dr. Kerr used epilepsy trends in the Black population to illustrate this problem.

“One potential bias is that AI can figure out a patient is Black without being told, and based on data that Black patients are less likely to get epilepsy surgery,” he said, “AI would say they don’t need it because they’re Black, which isn’t true.”

In other words, ML/AI can use systematic determinants of health, such as race, to learn what Dr. Kerr referred to as an “inappropriate association.”

For that reason, ML/AI users must test for bias.

Such data are often retrieved from electronic health records (EHR), which serve as an important source of data ML/AI input. Using EHR makes sense, as they are a major source of missed potential in improving prompt treatment. According to Dr. Kerr, 20% of academic neurologists’ notes miss seizure frequency, and 30% miss the age of onset.

In addition, International Classification of Diseases (ICD) codes create another hurdle depending on the type of code used. For example, epilepsy with G40 or 2 codes of R56 is reliable, while focal to bilateral versus generalized epilepsy proves more challenging.
 

 

 

AI Improves Efficiency in National Language Generation

Large language models (LLM) look at first drafts and can save time on formatting, image selection, and construction. Perhaps ChatGPT is the most famous LLM, but other tools in this category include Open AI and Bard. LLMs are trained on “the whole internet” and use publicly accessible text.

In these cases, prompts serve as input data. Output data are predictions of the first and subsequent words.

Many users appreciate the foundation LLMs provide in terms of facilitating and collating research and summarizing ideas. The LLM-generated text actually serves as a first draft, saving users time on more clerical tasks such as formatting, image selection, and structure. Notwithstanding, these tools still require human supervision to screen for hallucinations or to add specialized content.

“LLMs are a great starting place to save time but are loaded with errors,” Dr. Kerr said.

Even if the tools could produce error-free content, ethics still come into play when using AI-generated content without any alterations. Any ML/AI that has not been modified or supervised is considered plagiarism.

Yet, interestingly enough, Dr. Kerr found that patients respond more positively to AI than physicians when interacting.

“Patients felt that AI was more sensitive and compassionate because it was longer-winded and humans are short,” he said. He went on to argue that AI might actually prove useful in helping physicians to improve the quality of their patient interactions.

Dr. Kerr left the audience with these key takeaways:

  • ML/AI is just one type of clinical tool with benefits and limitations. The technology conveys the advantages of freeing up the clinician’s time to focus on more human-centered tasks, improving clinical decisions in challenging situations, and improving efficiency.
  • However, healthcare systems should understand that ML/AI is not 100% foolproof, as the software’s knowledge is limited to its training exposure, and proper use requires supervision.
Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

ORLANDO — Experts shed light on the applications, benefits, and pitfalls of artificial intelligence (AI) during the Merrit-Putnam Symposium at the annual meeting of the American Epilepsy Society (AES).

In a session titled “Artificial Intelligence Fundamentals and Breakthrough Applications in Epilepsy,” University of Pittsburgh neurologist and assistant professor Wesley Kerr, MD, PhD, provided an overview of AI as well its applications in neurology. He began by addressing perhaps one of the most controversial topics regarding AI in the medical community: clinicians’ fear of being replaced by technology.

“Artificial intelligence will not replace clinicians, but clinicians assisted by artificial intelligence will replace clinicians without artificial intelligence,” he told the audience.
 

To Optimize AI, Clinicians Must Lay the Proper Foundation

Dr. Kerr’s presentation focused on providing audience members with tools to help them evaluate new technologies, recognize benefits, and identify key costs and limitations associated with AI implementation and integration into clinical practice.

Before delving deeper, one must first understand basic terminology regarding AI. Without this knowledge, clinicians may inadvertently introduce bias or errata or fail to understand how to best leverage the technology to enhance the quality of the practice while improving patient outcomes.

Machine learning (ML) describes the process of using data to learn a specific task. Deep learning (DL) stacks multiple layers of ML to improve performance on the task. Lastly, generative AI generates content such as text, images, and media.

Utilizing AI effectively in clinical applications involves tapping into select features most related to prediction (for example, disease factors) and grouping features into categories based on measuring commonalities such as factor composition in a population. This information should be used in training data only.

Fully understanding ML/AI allows clinicians to use it as a diagnostic test by exploiting a combination of accuracy, sensitivity, and specificity, along with positive and negative predictive values.
 

Data Fidelity and Integrity Hinge on Optimal Data Inputs

In the case of epilepsy, calibration curves can provide practical guidance in terms of predicting impending seizures.

“ML/AI needs gold-standard labels for evaluation,” Dr. Kerr said. He went on to stress the importance of quality data inputs to optimize the fidelity of AI’s predictive analytics.

“If you input garbage, you’ll get garbage out,” he said. “So a lot of garbage going in means a lot of garbage out.”

Such “garbage” can result in missed or erroneous diagnoses, or even faulty predictions. Even when the data are complete, AI can draw incorrect conclusions based on trends for which it lacks proper context.

Dr. Kerr used epilepsy trends in the Black population to illustrate this problem.

“One potential bias is that AI can figure out a patient is Black without being told, and based on data that Black patients are less likely to get epilepsy surgery,” he said, “AI would say they don’t need it because they’re Black, which isn’t true.”

In other words, ML/AI can use systematic determinants of health, such as race, to learn what Dr. Kerr referred to as an “inappropriate association.”

For that reason, ML/AI users must test for bias.

Such data are often retrieved from electronic health records (EHR), which serve as an important source of data ML/AI input. Using EHR makes sense, as they are a major source of missed potential in improving prompt treatment. According to Dr. Kerr, 20% of academic neurologists’ notes miss seizure frequency, and 30% miss the age of onset.

In addition, International Classification of Diseases (ICD) codes create another hurdle depending on the type of code used. For example, epilepsy with G40 or 2 codes of R56 is reliable, while focal to bilateral versus generalized epilepsy proves more challenging.
 

 

 

AI Improves Efficiency in National Language Generation

Large language models (LLM) look at first drafts and can save time on formatting, image selection, and construction. Perhaps ChatGPT is the most famous LLM, but other tools in this category include Open AI and Bard. LLMs are trained on “the whole internet” and use publicly accessible text.

In these cases, prompts serve as input data. Output data are predictions of the first and subsequent words.

Many users appreciate the foundation LLMs provide in terms of facilitating and collating research and summarizing ideas. The LLM-generated text actually serves as a first draft, saving users time on more clerical tasks such as formatting, image selection, and structure. Notwithstanding, these tools still require human supervision to screen for hallucinations or to add specialized content.

“LLMs are a great starting place to save time but are loaded with errors,” Dr. Kerr said.

Even if the tools could produce error-free content, ethics still come into play when using AI-generated content without any alterations. Any ML/AI that has not been modified or supervised is considered plagiarism.

Yet, interestingly enough, Dr. Kerr found that patients respond more positively to AI than physicians when interacting.

“Patients felt that AI was more sensitive and compassionate because it was longer-winded and humans are short,” he said. He went on to argue that AI might actually prove useful in helping physicians to improve the quality of their patient interactions.

Dr. Kerr left the audience with these key takeaways:

  • ML/AI is just one type of clinical tool with benefits and limitations. The technology conveys the advantages of freeing up the clinician’s time to focus on more human-centered tasks, improving clinical decisions in challenging situations, and improving efficiency.
  • However, healthcare systems should understand that ML/AI is not 100% foolproof, as the software’s knowledge is limited to its training exposure, and proper use requires supervision.

ORLANDO — Experts shed light on the applications, benefits, and pitfalls of artificial intelligence (AI) during the Merrit-Putnam Symposium at the annual meeting of the American Epilepsy Society (AES).

In a session titled “Artificial Intelligence Fundamentals and Breakthrough Applications in Epilepsy,” University of Pittsburgh neurologist and assistant professor Wesley Kerr, MD, PhD, provided an overview of AI as well its applications in neurology. He began by addressing perhaps one of the most controversial topics regarding AI in the medical community: clinicians’ fear of being replaced by technology.

“Artificial intelligence will not replace clinicians, but clinicians assisted by artificial intelligence will replace clinicians without artificial intelligence,” he told the audience.
 

To Optimize AI, Clinicians Must Lay the Proper Foundation

Dr. Kerr’s presentation focused on providing audience members with tools to help them evaluate new technologies, recognize benefits, and identify key costs and limitations associated with AI implementation and integration into clinical practice.

Before delving deeper, one must first understand basic terminology regarding AI. Without this knowledge, clinicians may inadvertently introduce bias or errata or fail to understand how to best leverage the technology to enhance the quality of the practice while improving patient outcomes.

Machine learning (ML) describes the process of using data to learn a specific task. Deep learning (DL) stacks multiple layers of ML to improve performance on the task. Lastly, generative AI generates content such as text, images, and media.

Utilizing AI effectively in clinical applications involves tapping into select features most related to prediction (for example, disease factors) and grouping features into categories based on measuring commonalities such as factor composition in a population. This information should be used in training data only.

Fully understanding ML/AI allows clinicians to use it as a diagnostic test by exploiting a combination of accuracy, sensitivity, and specificity, along with positive and negative predictive values.
 

Data Fidelity and Integrity Hinge on Optimal Data Inputs

In the case of epilepsy, calibration curves can provide practical guidance in terms of predicting impending seizures.

“ML/AI needs gold-standard labels for evaluation,” Dr. Kerr said. He went on to stress the importance of quality data inputs to optimize the fidelity of AI’s predictive analytics.

“If you input garbage, you’ll get garbage out,” he said. “So a lot of garbage going in means a lot of garbage out.”

Such “garbage” can result in missed or erroneous diagnoses, or even faulty predictions. Even when the data are complete, AI can draw incorrect conclusions based on trends for which it lacks proper context.

Dr. Kerr used epilepsy trends in the Black population to illustrate this problem.

“One potential bias is that AI can figure out a patient is Black without being told, and based on data that Black patients are less likely to get epilepsy surgery,” he said, “AI would say they don’t need it because they’re Black, which isn’t true.”

In other words, ML/AI can use systematic determinants of health, such as race, to learn what Dr. Kerr referred to as an “inappropriate association.”

For that reason, ML/AI users must test for bias.

Such data are often retrieved from electronic health records (EHR), which serve as an important source of data ML/AI input. Using EHR makes sense, as they are a major source of missed potential in improving prompt treatment. According to Dr. Kerr, 20% of academic neurologists’ notes miss seizure frequency, and 30% miss the age of onset.

In addition, International Classification of Diseases (ICD) codes create another hurdle depending on the type of code used. For example, epilepsy with G40 or 2 codes of R56 is reliable, while focal to bilateral versus generalized epilepsy proves more challenging.
 

 

 

AI Improves Efficiency in National Language Generation

Large language models (LLM) look at first drafts and can save time on formatting, image selection, and construction. Perhaps ChatGPT is the most famous LLM, but other tools in this category include Open AI and Bard. LLMs are trained on “the whole internet” and use publicly accessible text.

In these cases, prompts serve as input data. Output data are predictions of the first and subsequent words.

Many users appreciate the foundation LLMs provide in terms of facilitating and collating research and summarizing ideas. The LLM-generated text actually serves as a first draft, saving users time on more clerical tasks such as formatting, image selection, and structure. Notwithstanding, these tools still require human supervision to screen for hallucinations or to add specialized content.

“LLMs are a great starting place to save time but are loaded with errors,” Dr. Kerr said.

Even if the tools could produce error-free content, ethics still come into play when using AI-generated content without any alterations. Any ML/AI that has not been modified or supervised is considered plagiarism.

Yet, interestingly enough, Dr. Kerr found that patients respond more positively to AI than physicians when interacting.

“Patients felt that AI was more sensitive and compassionate because it was longer-winded and humans are short,” he said. He went on to argue that AI might actually prove useful in helping physicians to improve the quality of their patient interactions.

Dr. Kerr left the audience with these key takeaways:

  • ML/AI is just one type of clinical tool with benefits and limitations. The technology conveys the advantages of freeing up the clinician’s time to focus on more human-centered tasks, improving clinical decisions in challenging situations, and improving efficiency.
  • However, healthcare systems should understand that ML/AI is not 100% foolproof, as the software’s knowledge is limited to its training exposure, and proper use requires supervision.
Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>166570</fileName> <TBEID>0C04E094.SIG</TBEID> <TBUniqueIdentifier>MD_0C04E094</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>AES: AI in Epilepsy</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240117T135607</QCDate> <firstPublished>20240117T162453</firstPublished> <LastPublished>20240117T162453</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240117T162453</CMSDate> <articleSource>FROM AES 2023</articleSource> <facebookInfo/> <meetingNumber>3271-23</meetingNumber> <byline>Frieda Wiley</byline> <bylineText>FRIEDA WILEY, PHARMD</bylineText> <bylineFull>FRIEDA WILEY, PHARMD</bylineFull> <bylineTitleText>MDedge News</bylineTitleText> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>“Artificial intelligence will not replace clinicians, but clinicians assisted by artificial intelligence will replace clinicians without artificial intelligence</metaDescription> <articlePDF/> <teaserImage/> <teaser>“Artificial intelligence will not replace clinicians, but clinicians assisted by artificial intelligence will replace clinicians without artificial intelligence.”</teaser> <title>With Proper Training, AI Can Be a Useful Tool in Epilepsy Management</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>erc</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>356</term> </publications> <sections> <term>39313</term> <term canonical="true">53</term> </sections> <topics> <term canonical="true">211</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>With Proper Training, AI Can Be a Useful Tool in Epilepsy Management</title> <deck/> </itemMeta> <itemContent> <p>ORLANDO — Experts shed light on the applications, benefits, and pitfalls of artificial intelligence (AI) during the Merrit-Putnam Symposium at the annual meeting of the American Epilepsy Society (AES). </p> <p>In a session titled “Artificial Intelligence Fundamentals and Breakthrough Applications in Epilepsy,” University of Pittsburgh neurologist and assistant professor Wesley Kerr, MD, PhD, provided an overview of AI as well its applications in neurology. He began by addressing perhaps one of the most controversial topics regarding AI in the medical community: clinicians’ fear of being replaced by technology. <br/><br/><span class="tag metaDescription">“Artificial intelligence will not replace clinicians, but clinicians assisted by artificial intelligence will replace clinicians without artificial intelligence,”</span> he told the audience. <br/><br/></p> <h2>To Optimize AI, Clinicians Must Lay the Proper Foundation</h2> <p>Dr. Kerr’s presentation focused on providing audience members with tools to help them evaluate new technologies, recognize benefits, and identify key costs and limitations associated with AI implementation and integration into clinical practice. </p> <p>Before delving deeper, one must first understand basic terminology regarding AI. Without this knowledge, clinicians may inadvertently introduce bias or errata or fail to understand how to best leverage the technology to enhance the quality of the practice while improving patient outcomes. <br/><br/>Machine learning (ML) describes the process of using data to learn a specific task. Deep learning (DL) stacks multiple layers of ML to improve performance on the task. Lastly, generative AI generates content such as text, images, and media.<br/><br/>Utilizing AI effectively in clinical applications involves tapping into select features most related to prediction (for example, disease factors) and grouping features into categories based on measuring commonalities such as factor composition in a population. This information should be used in training data only. <br/><br/>Fully understanding ML/AI allows clinicians to use it as a diagnostic test by exploiting a combination of accuracy, sensitivity, and specificity, along with positive and negative predictive values. <br/><br/></p> <h2>Data Fidelity and Integrity Hinge on Optimal Data Inputs</h2> <p>In the case of epilepsy, calibration curves can provide practical guidance in terms of predicting impending seizures. </p> <p>“ML/AI needs gold-standard labels for evaluation,” Dr. Kerr said. He went on to stress the importance of quality data inputs to optimize the fidelity of AI’s predictive analytics. <br/><br/>“If you input garbage, you’ll get garbage out,” he said. “So a lot of garbage going in means a lot of garbage out.”<br/><br/>Such “garbage” can result in missed or erroneous diagnoses, or even faulty predictions. Even when the data are complete, AI can draw incorrect conclusions based on trends for which it lacks proper context. <br/><br/>Dr. Kerr used epilepsy trends in the Black population to illustrate this problem.<br/><br/>“One potential bias is that AI can figure out a patient is Black without being told, and based on data that Black patients are less likely to get epilepsy surgery,” he said, “AI would say they don’t need it because they’re Black, which isn’t true.”<br/><br/>In other words, ML/AI can use systematic determinants of health, such as race, to learn what Dr. Kerr referred to as an “inappropriate association.” <br/><br/>For that reason, ML/AI users must test for bias.<br/><br/>Such data are often retrieved from electronic health records (EHR), which serve as an important source of data ML/AI input. Using EHR makes sense, as they are a major source of missed potential in improving prompt treatment. According to Dr. Kerr, 20% of academic neurologists’ notes miss seizure frequency, and 30% miss the age of onset. <br/><br/>In addition, International Classification of Diseases (ICD) codes create another hurdle depending on the type of code used. For example, epilepsy with G40 or 2 codes of R56 is reliable, while focal to bilateral versus generalized epilepsy proves more challenging. <br/><br/></p> <h2>AI Improves Efficiency in National Language Generation</h2> <p>Large language models (LLM) look at first drafts and can save time on formatting, image selection, and construction. Perhaps ChatGPT is the most famous LLM, but other tools in this category include Open AI and Bard. LLMs are trained on “the whole internet” and use publicly accessible text. </p> <p>In these cases, prompts serve as input data. Output data are predictions of the first and subsequent words. <br/><br/>Many users appreciate the foundation LLMs provide in terms of facilitating and collating research and summarizing ideas. The LLM-generated text actually serves as a first draft, saving users time on more clerical tasks such as formatting, image selection, and structure. Notwithstanding, these tools still require human supervision to screen for hallucinations or to add specialized content.<br/><br/>“LLMs are a great starting place to save time but are loaded with errors,” Dr. Kerr said. <br/><br/>Even if the tools could produce error-free content, ethics still come into play when using AI-generated content without any alterations. Any ML/AI that has not been modified or supervised is considered plagiarism. <br/><br/>Yet, interestingly enough, Dr. Kerr found that patients respond more positively to AI than physicians when interacting.<br/><br/>“Patients felt that AI was more sensitive and compassionate because it was longer-winded and humans are short,” he said. He went on to argue that AI might actually prove useful in helping physicians to improve the quality of their patient interactions. <br/><br/>Dr. Kerr left the audience with these key takeaways:</p> <ul class="body"> <li>ML/AI is just one type of clinical tool with benefits and limitations. The technology conveys the advantages of freeing up the clinician’s time to focus on more human-centered tasks, improving clinical decisions in challenging situations, and improving efficiency. </li> <li>However, healthcare systems should understand that ML/AI is not 100% foolproof, as the software’s knowledge is limited to its training exposure, and proper use requires supervision. </li> </ul> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM AES 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Genetic Testing Is Recommended for Adult Patients With Epilepsy

Article Type
Changed
Mon, 02/12/2024 - 16:00

ORLANDO — The epilepsy community has yet to come to a consensus on genetic testing. During a session at the annual meeting of the American Epilepsy Society (AES), researchers and clinicians convened to share their insights on genetic testing of adult patients with epilepsy.

Colin Ellis, MD, assistant professor of neurology at the Hospital of the University of Pennsylvania in Philadelphia, shared his clinical experience to explain the importance of genetic testing in adults patients despite access challenges, limited information on certain variants, and physician reticence.

“There’s a false misconception that genetic testing should only apply to children,” Dr. Ellis told the audience. “The earlier the onset of seizures, the more likely you are to find a genetic cause.”
 

Guidelines Differ

The International League Against Epilepsy Task Force for Clinical Genetic Testing, Development and Epileptic Encephalopathies (DEE) recommends conducting genetic testing in patients who have focal or generalized epilepsies to whom the following circumstances apply: autism or dysmorphism, familial history, or drug-resistant epilepsy.

However, the National Society of Genetic Counselors’ guidelines recommends genetic testing for patients who have any unexplained or idiopathic epilepsies.

Guidelines identify the patients who should get tested regardless of their age.
 

Personal Experience

Dr. Ellis, who has spent nearly 5 years running tests on patients with epilepsy, recently tested the 300th patient at his clinic. According to him, the yield is higher in focal epilepsy than in general epilepsy — an occurrence that counters what many believe.

“Focal epilepsies are more common than monogenic epilepsies but not intuitive to many people in the industry, despite being stated in the literature,” he said. “The absence of family history shouldn’t preclude you from genetic testing because it’s still possible to have a de novo variant not inherited from either parent.”

Genetic testing can be conducted by interrogating either the exome or the genome. However, cost remains a major barrier to access.

Dr. Ellis made several arguments supporting the use of genetic testing. First, genetic testing allows for a higher diagnostic yield (i.e., 24% versus 19% in panels and 9% in microarrays). Genetic testing provides a more comprehensive overview of a patient’s genetic landscape, and it can enhance the ability to identify certain epileptic conditions, such as those caused by monogenic epilepsy — a condition associated with 926 different genes.

“You’re also less likely to find variants of uncertain significance (VUS),” Dr. Ellis said. “Regardless, you should provide the lab with phenotype information because it will help them help you.”
 

Variants of Uncertain Significance

The National Human Genome Research Institute defines VUS as a variant found in a patient’s genome for which it remains unclear as to whether a health condition is causing the variant. Oftentimes, such variants have very little information available due to their rarity.

In order to resolve VUS, Dr. Ellis recommended family segregation. “If the VUS appears to be de novo, you should test the parent because if they carry the gene, then it’s probably not the cause,” he said.

Dr. Ellis outlined several steps in resolving VUS.

For starters, clinicians should determine the phenotypic fit and run some ancillary tests. For example, in the case of Glu 1 abnormalities, one should consider conducting a spinal tap to determine whether the patient has cerebral spinal fluid before taking additional action.

In addition, Dr. Ellis recommends defining variant characteristics, as it becomes important in determining whether it is appropriate to take action because the majority of variances are benign.

“The take-home point is that you should not act clinically on a VUS unless you know what you’re doing,” he said. “I also disagree with the belief that VUS are rare — it’s just that they cause so much anxiety because we’re uncomfortable with this kind of testing.”

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

ORLANDO — The epilepsy community has yet to come to a consensus on genetic testing. During a session at the annual meeting of the American Epilepsy Society (AES), researchers and clinicians convened to share their insights on genetic testing of adult patients with epilepsy.

Colin Ellis, MD, assistant professor of neurology at the Hospital of the University of Pennsylvania in Philadelphia, shared his clinical experience to explain the importance of genetic testing in adults patients despite access challenges, limited information on certain variants, and physician reticence.

“There’s a false misconception that genetic testing should only apply to children,” Dr. Ellis told the audience. “The earlier the onset of seizures, the more likely you are to find a genetic cause.”
 

Guidelines Differ

The International League Against Epilepsy Task Force for Clinical Genetic Testing, Development and Epileptic Encephalopathies (DEE) recommends conducting genetic testing in patients who have focal or generalized epilepsies to whom the following circumstances apply: autism or dysmorphism, familial history, or drug-resistant epilepsy.

However, the National Society of Genetic Counselors’ guidelines recommends genetic testing for patients who have any unexplained or idiopathic epilepsies.

Guidelines identify the patients who should get tested regardless of their age.
 

Personal Experience

Dr. Ellis, who has spent nearly 5 years running tests on patients with epilepsy, recently tested the 300th patient at his clinic. According to him, the yield is higher in focal epilepsy than in general epilepsy — an occurrence that counters what many believe.

“Focal epilepsies are more common than monogenic epilepsies but not intuitive to many people in the industry, despite being stated in the literature,” he said. “The absence of family history shouldn’t preclude you from genetic testing because it’s still possible to have a de novo variant not inherited from either parent.”

Genetic testing can be conducted by interrogating either the exome or the genome. However, cost remains a major barrier to access.

Dr. Ellis made several arguments supporting the use of genetic testing. First, genetic testing allows for a higher diagnostic yield (i.e., 24% versus 19% in panels and 9% in microarrays). Genetic testing provides a more comprehensive overview of a patient’s genetic landscape, and it can enhance the ability to identify certain epileptic conditions, such as those caused by monogenic epilepsy — a condition associated with 926 different genes.

“You’re also less likely to find variants of uncertain significance (VUS),” Dr. Ellis said. “Regardless, you should provide the lab with phenotype information because it will help them help you.”
 

Variants of Uncertain Significance

The National Human Genome Research Institute defines VUS as a variant found in a patient’s genome for which it remains unclear as to whether a health condition is causing the variant. Oftentimes, such variants have very little information available due to their rarity.

In order to resolve VUS, Dr. Ellis recommended family segregation. “If the VUS appears to be de novo, you should test the parent because if they carry the gene, then it’s probably not the cause,” he said.

Dr. Ellis outlined several steps in resolving VUS.

For starters, clinicians should determine the phenotypic fit and run some ancillary tests. For example, in the case of Glu 1 abnormalities, one should consider conducting a spinal tap to determine whether the patient has cerebral spinal fluid before taking additional action.

In addition, Dr. Ellis recommends defining variant characteristics, as it becomes important in determining whether it is appropriate to take action because the majority of variances are benign.

“The take-home point is that you should not act clinically on a VUS unless you know what you’re doing,” he said. “I also disagree with the belief that VUS are rare — it’s just that they cause so much anxiety because we’re uncomfortable with this kind of testing.”

ORLANDO — The epilepsy community has yet to come to a consensus on genetic testing. During a session at the annual meeting of the American Epilepsy Society (AES), researchers and clinicians convened to share their insights on genetic testing of adult patients with epilepsy.

Colin Ellis, MD, assistant professor of neurology at the Hospital of the University of Pennsylvania in Philadelphia, shared his clinical experience to explain the importance of genetic testing in adults patients despite access challenges, limited information on certain variants, and physician reticence.

“There’s a false misconception that genetic testing should only apply to children,” Dr. Ellis told the audience. “The earlier the onset of seizures, the more likely you are to find a genetic cause.”
 

Guidelines Differ

The International League Against Epilepsy Task Force for Clinical Genetic Testing, Development and Epileptic Encephalopathies (DEE) recommends conducting genetic testing in patients who have focal or generalized epilepsies to whom the following circumstances apply: autism or dysmorphism, familial history, or drug-resistant epilepsy.

However, the National Society of Genetic Counselors’ guidelines recommends genetic testing for patients who have any unexplained or idiopathic epilepsies.

Guidelines identify the patients who should get tested regardless of their age.
 

Personal Experience

Dr. Ellis, who has spent nearly 5 years running tests on patients with epilepsy, recently tested the 300th patient at his clinic. According to him, the yield is higher in focal epilepsy than in general epilepsy — an occurrence that counters what many believe.

“Focal epilepsies are more common than monogenic epilepsies but not intuitive to many people in the industry, despite being stated in the literature,” he said. “The absence of family history shouldn’t preclude you from genetic testing because it’s still possible to have a de novo variant not inherited from either parent.”

Genetic testing can be conducted by interrogating either the exome or the genome. However, cost remains a major barrier to access.

Dr. Ellis made several arguments supporting the use of genetic testing. First, genetic testing allows for a higher diagnostic yield (i.e., 24% versus 19% in panels and 9% in microarrays). Genetic testing provides a more comprehensive overview of a patient’s genetic landscape, and it can enhance the ability to identify certain epileptic conditions, such as those caused by monogenic epilepsy — a condition associated with 926 different genes.

“You’re also less likely to find variants of uncertain significance (VUS),” Dr. Ellis said. “Regardless, you should provide the lab with phenotype information because it will help them help you.”
 

Variants of Uncertain Significance

The National Human Genome Research Institute defines VUS as a variant found in a patient’s genome for which it remains unclear as to whether a health condition is causing the variant. Oftentimes, such variants have very little information available due to their rarity.

In order to resolve VUS, Dr. Ellis recommended family segregation. “If the VUS appears to be de novo, you should test the parent because if they carry the gene, then it’s probably not the cause,” he said.

Dr. Ellis outlined several steps in resolving VUS.

For starters, clinicians should determine the phenotypic fit and run some ancillary tests. For example, in the case of Glu 1 abnormalities, one should consider conducting a spinal tap to determine whether the patient has cerebral spinal fluid before taking additional action.

In addition, Dr. Ellis recommends defining variant characteristics, as it becomes important in determining whether it is appropriate to take action because the majority of variances are benign.

“The take-home point is that you should not act clinically on a VUS unless you know what you’re doing,” he said. “I also disagree with the belief that VUS are rare — it’s just that they cause so much anxiety because we’re uncomfortable with this kind of testing.”

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>166516</fileName> <TBEID>0C04DF99.SIG</TBEID> <TBUniqueIdentifier>MD_0C04DF99</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>AES: Epilepsy genetic testing</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240112T121205</QCDate> <firstPublished>20240112T122013</firstPublished> <LastPublished>20240112T122013</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240112T122013</CMSDate> <articleSource>FROM AES 2023</articleSource> <facebookInfo/> <meetingNumber>3271-23</meetingNumber> <byline>Frieda Wiley</byline> <bylineText>FRIEDA WILEY, PHARMD</bylineText> <bylineFull>FRIEDA WILEY, PHARMD</bylineFull> <bylineTitleText>MDedge News</bylineTitleText> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Genetic testing provides a more comprehensive overview of a patient’s genetic landscape, and it can enhance the ability to identify certain epileptic conditions</metaDescription> <articlePDF/> <teaserImage/> <teaser> <span class="tag metaDescription">Genetic testing provides a more comprehensive overview of a patient’s genetic landscape, and it can enhance the ability to identify certain epileptic conditions.</span> </teaser> <title>Genetic Testing Is Recommended for Adult Patients With Epilepsy</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>erc</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>356</term> </publications> <sections> <term canonical="true">53</term> <term>39313</term> </sections> <topics> <term canonical="true">211</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Genetic Testing Is Recommended for Adult Patients With Epilepsy</title> <deck/> </itemMeta> <itemContent> <p>ORLANDO — The epilepsy community has yet to come to a consensus on genetic testing. During a session at the annual meeting of the American Epilepsy Society (AES), researchers and clinicians convened to share their insights on genetic testing of adult patients with epilepsy. </p> <p>Collin Ellis, MD, assistant professor of neurology at the Hospital of the University of Pennsylvania in Philadelphia, shared his clinical experience to explain the importance of genetic testing in adults patients despite access challenges, limited information on certain variants, and physician reticence. <br/><br/>“There’s a false misconception that genetic testing should only apply to children,” Dr. Ellis told the audience. “The earlier the onset of seizures, the more likely you are to find a genetic cause.”<br/><br/></p> <h2>Guidelines Differ</h2> <p>The International League Against Epilepsy Task Force for Clinical Genetic Testing, Development and Epileptic Encephalopathies (DEE) recommends conducting genetic testing in patients who have focal or generalized epilepsies to whom the following circumstances apply: autism or dysmorphism, familial history, or drug-resistant epilepsy. </p> <p>However, the National Society of Genetic Counselors’ guidelines recommends genetic testing for patients who have any unexplained or idiopathic epilepsies. <br/><br/>Guidelines identify the patients who should get tested regardless of their age.<br/><br/></p> <h2>Personal Experience</h2> <p>Dr. Ellis, who has spent nearly 5 years running tests on patients with epilepsy, recently tested the 300th patient at his clinic. According to him, the yield is higher in focal epilepsy than in general epilepsy — an occurrence that counters what many believe.</p> <p>“Focal epilepsies are more common than monogenic epilepsies but not intuitive to many people in the industry, despite being stated in the literature,” he said. “The absence of family history shouldn’t preclude you from genetic testing because it’s still possible to have a de novo variant not inherited from either parent.” <br/><br/>Genetic testing can be conducted by interrogating either the exome or the genome. However, cost remains a major barrier to access. <br/><br/>Dr. Ellis made several arguments supporting the use of genetic testing. First, genetic testing allows for a higher diagnostic yield (i.e., 24% versus 19% in panels and 9% in microarrays). Genetic testing provides a more comprehensive overview of a patient’s genetic landscape, and it can enhance the ability to identify certain epileptic conditions, such as those caused by monogenic epilepsy — a condition associated with 926 different genes. <br/><br/>“You’re also less likely to find variants of uncertain significance (VUS),” Dr. Ellis said. “Regardless, you should provide the lab with phenotype information because it will help them help you.”<br/><br/></p> <h2>Variants of Uncertain Significance</h2> <p>The National Human Genome Research Institute defines VUS as a variant found in a patient’s genome for which it remains unclear as to whether a health condition is causing the variant. Oftentimes, such variants have very little information available due to their rarity.</p> <p>In order to resolve VUS, Dr. Ellis recommended family segregation. “If the VUS appears to be de novo, you should test the parent because if they carry the gene, then it’s probably not the cause,” he said.<br/><br/>Dr. Ellis outlined several steps in resolving VUS. <br/><br/>For starters, clinicians should determine the phenotypic fit and run some ancillary tests. For example, in the case of Glu 1 abnormalities, one should consider conducting a spinal tap to determine whether the patient has cerebral spinal fluid before taking additional action.<br/><br/>In addition, Dr. Ellis recommends defining variant characteristics, as it becomes important in determining whether it is appropriate to take action because the majority of variances are benign.<br/><br/>“The take-home point is that you should not act clinically on a VUS unless you know what you’re doing,” he said. “I also disagree with the belief that VUS are rare — it’s just that they cause so much anxiety because we’re uncomfortable with this kind of testing.”<span class="end"/></p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM AES 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Alzheimer’s and Epilepsy: Can Shared Molecular Mechanisms Reveal New Opportunities for Epilepsy?

Article Type
Changed
Mon, 01/08/2024 - 16:26

ORLANDO — “There are similarities between Alzheimer’s disease and epilepsy,” said Delia Marias Talos, MD, at a session of the annual meeting of the American Epilepsy Society (AES).

A Closer Look at the Brain

“Phosphorylated tau correlates with cognitive function and executive function recorded presurgery, but it looks like the generative changes are more associated with temporal lobe and aging.”

Alzheimer’s disease is a degenerative condition marked by progressive memory deficits and cognitive decline noted by amyloid plaques and a formation of neurofibrillary tangles resulting from tau hyperphosphorylation.

Epilepsy, on the other hand, is a multifactorial condition with causes ranging from metabolic disorders, structural defects, infections, genetic mutations, and autoimmune disorders. In addition, nearly 50% of all epileptic seizures are idiopathic in nature.

Dr. Talos, professor of neurology at the University of Pennsylvania Perlman School of Medicine in Philadelphia, and her team did not see neurofibrillary tangles in the presurgical brains of epilepsy patients they studied; however, they saw tau plaques. In the future, they seek to investigate the features that distinguish epilepsy from Alzheimer’s disease.

Toxic fragments are probably there because amyloid precursor protein is highly upregulated, she told conference attendees. “We hypothesized that amyloid plaque is cleared but not impaired in epilepsy.”

The prognosis looks comparatively worse for patients who have Alzheimer’s disease and comorbid epilepsy than for patients who have only epilepsy. In addition, Dr. Talos stated that seizures appear to have an additive effort on Alzheimer’s disease.
 

Fyn-disruptive Therapy

Marson Putra, MD, PhD, a neuroscientist and postdoctoral researcher at Iowa State in Ames, Iowa, presented on the potential impact of a novel fyn-tau interaction as an unexplored target for epileptogensis and epilepsy.

Dr. Putra studied whether fyn-tau interactions exist in epilepsy. In both Alzheimer’s disease and epilepsy, Fyn belongs to the Src family of nonreceptor tyrosine kinases (SFKs), which are involved in cell proliferation and migration. Fyn contains an SH3 domain, which serves as a target for tau’s proline-rich (PxxP) motif. Fyn phosphorylates tau, specifically at tyrosine residue Y18, making fyn-disruptive therapy worth exploring.

Dr. Putra shared several currently proposed mechanisms of action regarding the pathogenesis of the tau plaque. In the first theory, the tau protein assumes a closed conformation in its normal state, thereby concealing the PxxP motif. However, in the second theory, pathogenesis causes the tau protein to assume an open conformation in the disease state, exposing pAT8 sites and making them available to fyn phosphorylation. In the second scenario, which involves Alzheimer’s disease, the fyn-tau interaction still occurs in open conformation state and is thought to occur in the postsynaptic terminal of the dendritic spine.

To investigate the proposed disease-causing mechanisms, Dr. Putra and her team studied status epilepticus in a rodent model of status epilepticus (SE). They used proximity ligation assay to measure interactions between Fyn and tau. They found AT8 and Y18 Fyn and N-methyl-D-aspartate (NMDA) receptor activation in a rat model and increased Fyn interaction. In addition, neuronal nitric oxide synthase levels were elevated 24 hours post-status. When investigating the fyn activity and interactions in the human brain, they found fyn phosphorylation – something that had never been reported before.

From there, Dr. Putra’s team sought to answer whether manipulating fyn-tau interactions could modify epilepsy. To do so, they conducted an experiment using the pharmacological Fyn inhibitor sarcatinib (SAR) and found it modified dysregulated postsynaptic proteins 24 hours post-SE in rat models. Longer exposure also bore a positive effect on epileptic rats.

After treating epileptic rats with SAR for 7 weeks, Dr. Putra found that SAR therapy reduces convulsive seizures during 7 weeks post-SE in rats. Recruiting pharmacological Fyn inhibition sufficiently decreased Fyn-tau interaction, NR-PSD95 complex, and convulsive seizures in chronic epilepsy.

Ultimately, her findings showed that SE exacerbates fyn-tau interactions, with chronic epilepsy modeling showing sustained elevation. In addition, fyn-tau interactions mediate and sustain neuronal hyperexcitability in the epileptic population.

“The impact on clinical care will be bidirectional relevant therapeutic targets in epilepsy and Alzheimer’s disease,” Dr. Putra told the audience.
 

 

 

Trends in epilepsy comorbidity and mortality

The final presenter, University of Washington researcher Aaron del Pozo, PhD, explained the impact of early-onset Alzheimer’s disease on overall outcomes and epilepsy.

“Early-onset Alzheimer’s disease carries a high seizure risk that affects quality of life as well as mortality,” Dr. del Pozo said.

According to data published in the British Medical Journal in 2020, the number of patients with epilepsy who had degenerative disease of the central nervous system or vascular dementia and delirium increased by approximately 210% from 1999 to 2017. Cerebral palsy trailed in second place with malignant neoplasms increasing by 50%. Cerebrovascular disease­–related death in the epileptic population showed nearly negligible change, and ischemic heart disease and epilepsy decreased by approximately 25% and 15%, respectively. In addition, patients who have both epilepsy and Alzheimer’s disease are less likely to survive than patients who develop epilepsy after Alzheimer’s disease.

“We found that having epilepsy alone has decreased mortality, but having it in addition to other generative diseases of the central nervous system has a 200% increase in mortality,” Dr. del Pozo said.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

ORLANDO — “There are similarities between Alzheimer’s disease and epilepsy,” said Delia Marias Talos, MD, at a session of the annual meeting of the American Epilepsy Society (AES).

A Closer Look at the Brain

“Phosphorylated tau correlates with cognitive function and executive function recorded presurgery, but it looks like the generative changes are more associated with temporal lobe and aging.”

Alzheimer’s disease is a degenerative condition marked by progressive memory deficits and cognitive decline noted by amyloid plaques and a formation of neurofibrillary tangles resulting from tau hyperphosphorylation.

Epilepsy, on the other hand, is a multifactorial condition with causes ranging from metabolic disorders, structural defects, infections, genetic mutations, and autoimmune disorders. In addition, nearly 50% of all epileptic seizures are idiopathic in nature.

Dr. Talos, professor of neurology at the University of Pennsylvania Perlman School of Medicine in Philadelphia, and her team did not see neurofibrillary tangles in the presurgical brains of epilepsy patients they studied; however, they saw tau plaques. In the future, they seek to investigate the features that distinguish epilepsy from Alzheimer’s disease.

Toxic fragments are probably there because amyloid precursor protein is highly upregulated, she told conference attendees. “We hypothesized that amyloid plaque is cleared but not impaired in epilepsy.”

The prognosis looks comparatively worse for patients who have Alzheimer’s disease and comorbid epilepsy than for patients who have only epilepsy. In addition, Dr. Talos stated that seizures appear to have an additive effort on Alzheimer’s disease.
 

Fyn-disruptive Therapy

Marson Putra, MD, PhD, a neuroscientist and postdoctoral researcher at Iowa State in Ames, Iowa, presented on the potential impact of a novel fyn-tau interaction as an unexplored target for epileptogensis and epilepsy.

Dr. Putra studied whether fyn-tau interactions exist in epilepsy. In both Alzheimer’s disease and epilepsy, Fyn belongs to the Src family of nonreceptor tyrosine kinases (SFKs), which are involved in cell proliferation and migration. Fyn contains an SH3 domain, which serves as a target for tau’s proline-rich (PxxP) motif. Fyn phosphorylates tau, specifically at tyrosine residue Y18, making fyn-disruptive therapy worth exploring.

Dr. Putra shared several currently proposed mechanisms of action regarding the pathogenesis of the tau plaque. In the first theory, the tau protein assumes a closed conformation in its normal state, thereby concealing the PxxP motif. However, in the second theory, pathogenesis causes the tau protein to assume an open conformation in the disease state, exposing pAT8 sites and making them available to fyn phosphorylation. In the second scenario, which involves Alzheimer’s disease, the fyn-tau interaction still occurs in open conformation state and is thought to occur in the postsynaptic terminal of the dendritic spine.

To investigate the proposed disease-causing mechanisms, Dr. Putra and her team studied status epilepticus in a rodent model of status epilepticus (SE). They used proximity ligation assay to measure interactions between Fyn and tau. They found AT8 and Y18 Fyn and N-methyl-D-aspartate (NMDA) receptor activation in a rat model and increased Fyn interaction. In addition, neuronal nitric oxide synthase levels were elevated 24 hours post-status. When investigating the fyn activity and interactions in the human brain, they found fyn phosphorylation – something that had never been reported before.

From there, Dr. Putra’s team sought to answer whether manipulating fyn-tau interactions could modify epilepsy. To do so, they conducted an experiment using the pharmacological Fyn inhibitor sarcatinib (SAR) and found it modified dysregulated postsynaptic proteins 24 hours post-SE in rat models. Longer exposure also bore a positive effect on epileptic rats.

After treating epileptic rats with SAR for 7 weeks, Dr. Putra found that SAR therapy reduces convulsive seizures during 7 weeks post-SE in rats. Recruiting pharmacological Fyn inhibition sufficiently decreased Fyn-tau interaction, NR-PSD95 complex, and convulsive seizures in chronic epilepsy.

Ultimately, her findings showed that SE exacerbates fyn-tau interactions, with chronic epilepsy modeling showing sustained elevation. In addition, fyn-tau interactions mediate and sustain neuronal hyperexcitability in the epileptic population.

“The impact on clinical care will be bidirectional relevant therapeutic targets in epilepsy and Alzheimer’s disease,” Dr. Putra told the audience.
 

 

 

Trends in epilepsy comorbidity and mortality

The final presenter, University of Washington researcher Aaron del Pozo, PhD, explained the impact of early-onset Alzheimer’s disease on overall outcomes and epilepsy.

“Early-onset Alzheimer’s disease carries a high seizure risk that affects quality of life as well as mortality,” Dr. del Pozo said.

According to data published in the British Medical Journal in 2020, the number of patients with epilepsy who had degenerative disease of the central nervous system or vascular dementia and delirium increased by approximately 210% from 1999 to 2017. Cerebral palsy trailed in second place with malignant neoplasms increasing by 50%. Cerebrovascular disease­–related death in the epileptic population showed nearly negligible change, and ischemic heart disease and epilepsy decreased by approximately 25% and 15%, respectively. In addition, patients who have both epilepsy and Alzheimer’s disease are less likely to survive than patients who develop epilepsy after Alzheimer’s disease.

“We found that having epilepsy alone has decreased mortality, but having it in addition to other generative diseases of the central nervous system has a 200% increase in mortality,” Dr. del Pozo said.

ORLANDO — “There are similarities between Alzheimer’s disease and epilepsy,” said Delia Marias Talos, MD, at a session of the annual meeting of the American Epilepsy Society (AES).

A Closer Look at the Brain

“Phosphorylated tau correlates with cognitive function and executive function recorded presurgery, but it looks like the generative changes are more associated with temporal lobe and aging.”

Alzheimer’s disease is a degenerative condition marked by progressive memory deficits and cognitive decline noted by amyloid plaques and a formation of neurofibrillary tangles resulting from tau hyperphosphorylation.

Epilepsy, on the other hand, is a multifactorial condition with causes ranging from metabolic disorders, structural defects, infections, genetic mutations, and autoimmune disorders. In addition, nearly 50% of all epileptic seizures are idiopathic in nature.

Dr. Talos, professor of neurology at the University of Pennsylvania Perlman School of Medicine in Philadelphia, and her team did not see neurofibrillary tangles in the presurgical brains of epilepsy patients they studied; however, they saw tau plaques. In the future, they seek to investigate the features that distinguish epilepsy from Alzheimer’s disease.

Toxic fragments are probably there because amyloid precursor protein is highly upregulated, she told conference attendees. “We hypothesized that amyloid plaque is cleared but not impaired in epilepsy.”

The prognosis looks comparatively worse for patients who have Alzheimer’s disease and comorbid epilepsy than for patients who have only epilepsy. In addition, Dr. Talos stated that seizures appear to have an additive effort on Alzheimer’s disease.
 

Fyn-disruptive Therapy

Marson Putra, MD, PhD, a neuroscientist and postdoctoral researcher at Iowa State in Ames, Iowa, presented on the potential impact of a novel fyn-tau interaction as an unexplored target for epileptogensis and epilepsy.

Dr. Putra studied whether fyn-tau interactions exist in epilepsy. In both Alzheimer’s disease and epilepsy, Fyn belongs to the Src family of nonreceptor tyrosine kinases (SFKs), which are involved in cell proliferation and migration. Fyn contains an SH3 domain, which serves as a target for tau’s proline-rich (PxxP) motif. Fyn phosphorylates tau, specifically at tyrosine residue Y18, making fyn-disruptive therapy worth exploring.

Dr. Putra shared several currently proposed mechanisms of action regarding the pathogenesis of the tau plaque. In the first theory, the tau protein assumes a closed conformation in its normal state, thereby concealing the PxxP motif. However, in the second theory, pathogenesis causes the tau protein to assume an open conformation in the disease state, exposing pAT8 sites and making them available to fyn phosphorylation. In the second scenario, which involves Alzheimer’s disease, the fyn-tau interaction still occurs in open conformation state and is thought to occur in the postsynaptic terminal of the dendritic spine.

To investigate the proposed disease-causing mechanisms, Dr. Putra and her team studied status epilepticus in a rodent model of status epilepticus (SE). They used proximity ligation assay to measure interactions between Fyn and tau. They found AT8 and Y18 Fyn and N-methyl-D-aspartate (NMDA) receptor activation in a rat model and increased Fyn interaction. In addition, neuronal nitric oxide synthase levels were elevated 24 hours post-status. When investigating the fyn activity and interactions in the human brain, they found fyn phosphorylation – something that had never been reported before.

From there, Dr. Putra’s team sought to answer whether manipulating fyn-tau interactions could modify epilepsy. To do so, they conducted an experiment using the pharmacological Fyn inhibitor sarcatinib (SAR) and found it modified dysregulated postsynaptic proteins 24 hours post-SE in rat models. Longer exposure also bore a positive effect on epileptic rats.

After treating epileptic rats with SAR for 7 weeks, Dr. Putra found that SAR therapy reduces convulsive seizures during 7 weeks post-SE in rats. Recruiting pharmacological Fyn inhibition sufficiently decreased Fyn-tau interaction, NR-PSD95 complex, and convulsive seizures in chronic epilepsy.

Ultimately, her findings showed that SE exacerbates fyn-tau interactions, with chronic epilepsy modeling showing sustained elevation. In addition, fyn-tau interactions mediate and sustain neuronal hyperexcitability in the epileptic population.

“The impact on clinical care will be bidirectional relevant therapeutic targets in epilepsy and Alzheimer’s disease,” Dr. Putra told the audience.
 

 

 

Trends in epilepsy comorbidity and mortality

The final presenter, University of Washington researcher Aaron del Pozo, PhD, explained the impact of early-onset Alzheimer’s disease on overall outcomes and epilepsy.

“Early-onset Alzheimer’s disease carries a high seizure risk that affects quality of life as well as mortality,” Dr. del Pozo said.

According to data published in the British Medical Journal in 2020, the number of patients with epilepsy who had degenerative disease of the central nervous system or vascular dementia and delirium increased by approximately 210% from 1999 to 2017. Cerebral palsy trailed in second place with malignant neoplasms increasing by 50%. Cerebrovascular disease­–related death in the epileptic population showed nearly negligible change, and ischemic heart disease and epilepsy decreased by approximately 25% and 15%, respectively. In addition, patients who have both epilepsy and Alzheimer’s disease are less likely to survive than patients who develop epilepsy after Alzheimer’s disease.

“We found that having epilepsy alone has decreased mortality, but having it in addition to other generative diseases of the central nervous system has a 200% increase in mortality,” Dr. del Pozo said.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>166460</fileName> <TBEID>0C04DE7D.SIG</TBEID> <TBUniqueIdentifier>MD_0C04DE7D</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>AES: Epilepsy and Alzheimer's</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240108T150806</QCDate> <firstPublished>20240108T153717</firstPublished> <LastPublished>20240108T153717</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240108T153717</CMSDate> <articleSource>From AES 2023</articleSource> <facebookInfo/> <meetingNumber>3271-23</meetingNumber> <byline>Frieda Wiley</byline> <bylineText>FRIEDA WILEY, PHARMD</bylineText> <bylineFull>FRIEDA WILEY, PHARMD</bylineFull> <bylineTitleText>MDedge News</bylineTitleText> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>There are similarities between Alzheimer’s disease and epilepsy</metaDescription> <articlePDF/> <teaserImage/> <teaser>The prognosis looks comparatively worse for patients who have Alzheimer’s disease and comorbid epilepsy than for patients who have only epilepsy.</teaser> <title>Alzheimer’s and Epilepsy: Can Shared Molecular Mechanisms Reveal New Opportunities for Epilepsy?</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>erc</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>356</term> </publications> <sections> <term canonical="true">53</term> <term>39313</term> </sections> <topics> <term canonical="true">211</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Alzheimer’s and Epilepsy: Can Shared Molecular Mechanisms Reveal New Opportunities for Epilepsy?</title> <deck/> </itemMeta> <itemContent> <p>ORLANDO — “<span class="tag metaDescription">There are similarities between Alzheimer’s disease and epilepsy</span>,” said Delia Marias Talos, MD, at a session of the annual meeting of the American Epilepsy Society (AES). </p> <h2>A Closer Look at the Brain</h2> <p>“Phosphorylated tau correlates with cognitive function and executive function recorded presurgery, but it looks like the generative changes are more associated with temporal lobe and aging.”</p> <p>Alzheimer’s disease is a degenerative condition marked by progressive memory deficits and cognitive decline noted by amyloid plaques and a formation of neurofibrillary tangles resulting from tau hyperphosphorylation. <br/><br/>Epilepsy, on the other hand, is a multifactorial condition with causes ranging from metabolic disorders, structural defects, infections, genetic mutations, and autoimmune disorders. In addition, nearly 50% of all epileptic seizures are idiopathic in nature.<br/><br/>Dr. Talos, professor of neurology at the University of Pennsylvania Perlman School of Medicine in Philadelphia, and her team did not see neurofibrillary tangles in the presurgical brains of epilepsy patients they studied; however, they saw tau plaques. In the future, they seek to investigate the features that distinguish epilepsy from Alzheimer’s disease. <br/><br/>Toxic fragments are probably there because amyloid precursor protein is highly upregulated, she told conference attendees. “We hypothesized that amyloid plaque is cleared but not impaired in epilepsy.”<br/><br/>The prognosis looks comparatively worse for patients who have Alzheimer’s disease and comorbid epilepsy than for patients who have only epilepsy. In addition, Dr. Talos stated that seizures appear to have an additive effort on Alzheimer’s disease. <br/><br/></p> <h2>Fyn-disruptive Therapy</h2> <p>Marson Putra, MD, PhD, a neuroscientist and postdoctoral researcher at Iowa State in Ames, Iowa, presented on the potential impact of a novel fyn-tau interaction as an unexplored target for epileptogensis and epilepsy.</p> <p>Dr. Putra studied whether fyn-tau interactions exist in epilepsy. In both Alzheimer’s disease and epilepsy, Fyn belongs to the Src family of nonreceptor tyrosine kinases (SFKs), which are involved in cell proliferation and migration. Fyn contains an SH3 domain, which serves as a target for tau’s proline-rich (PxxP) motif. Fyn phosphorylates tau, specifically at tyrosine residue Y18, making fyn-disruptive therapy worth exploring. <br/><br/>Dr. Putra shared several currently proposed mechanisms of action regarding the pathogenesis of the tau plaque. In the first theory, the tau protein assumes a closed conformation in its normal state, thereby concealing the PxxP motif. However, in the second theory, pathogenesis causes the tau protein to assume an open conformation in the disease state, exposing pAT8 sites and making them available to fyn phosphorylation. In the second scenario, which involves Alzheimer’s disease, the fyn-tau interaction still occurs in open conformation state and is thought to occur in the postsynaptic terminal of the dendritic spine. <br/><br/>To investigate the proposed disease-causing mechanisms, Dr. Putra and her team studied status epilepticus in a rodent model of status epilepticus (SE). They used proximity ligation assay to measure interactions between Fyn and tau. They found AT8 and Y18 Fyn and N-methyl-D-aspartate (NMDA) receptor activation in a rat model and increased Fyn interaction. In addition, neuronal nitric oxide synthase levels were elevated 24 hours post-status. When investigating the fyn activity and interactions in the human brain, they found fyn phosphorylation – something that had never been reported before.<br/><br/>From there, Dr. Putra’s team sought to answer whether manipulating fyn-tau interactions could modify epilepsy. To do so, they conducted an experiment using the pharmacological Fyn inhibitor sarcatinib (SAR) and found it modified dysregulated postsynaptic proteins 24 hours post-SE in rat models. Longer exposure also bore a positive effect on epileptic rats.<br/><br/>After treating epileptic rats with SAR for 7 weeks, Dr. Putra found that SAR therapy reduces convulsive seizures during 7 weeks post-SE in rats. Recruiting pharmacological Fyn inhibition sufficiently decreased Fyn-tau interaction, NR-PSD95 complex, and convulsive seizures in chronic epilepsy.<br/><br/>Ultimately, her findings showed that SE exacerbates fyn-tau interactions, with chronic epilepsy modeling showing sustained elevation. In addition, fyn-tau interactions mediate and sustain neuronal hyperexcitability in the epileptic population. <br/><br/>“The impact on clinical care will be bidirectional relevant therapeutic targets in epilepsy and Alzheimer’s disease,” Dr. Putra told the audience. <br/><br/></p> <h2>Trends in epilepsy comorbidity and mortality</h2> <p>The final presenter, University of Washington researcher Aaron del Pozo, PhD, explained the impact of early-onset Alzheimer’s disease on overall outcomes and epilepsy. </p> <p>“Early-onset Alzheimer’s disease carries a high seizure risk that affects quality of life as well as mortality,” Dr. del Pozo said. <br/><br/>According to <span class="Hyperlink"><a href="https://bmjopen.bmj.com/content/10/8/e035767">data published</a></span> in the British Medical Journal in 2020, the number of patients with epilepsy who had degenerative disease of the central nervous system or vascular dementia and delirium increased by approximately 210% from 1999 to 2017. Cerebral palsy trailed in second place with malignant neoplasms increasing by 50%. Cerebrovascular disease­–related death in the epileptic population showed nearly negligible change, and ischemic heart disease and epilepsy decreased by approximately 25% and 15%, respectively. In addition, patients who have both epilepsy and Alzheimer’s disease are less likely to survive than patients who develop epilepsy after Alzheimer’s disease.<br/><br/>“We found that having epilepsy alone has decreased mortality, but having it in addition to other generative diseases of the central nervous system has a 200% increase in mortality,” Dr. del Pozo said.<span class="end"/> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM AES 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Despite Few CNS Gene Therapies for Epilepsy, New Research Offers Hope

Article Type
Changed
Mon, 02/12/2024 - 16:02

— Scientists have made major strides in gene therapy, and experts convened to share their insights on gene therapy development and challenges at the annual meeting of the American Epilepsy Society during a session called “Recent Advances Gene Therapies for the Epilepsies: A Preclinical Perspective.”

Four types of gene therapy

Suzanne Paradis, PhD, cofounder and president of Severin Therapeutics Inc., initiated the session, giving the audience an overview of the four types of gene therapy — the first being gene replacements, where a copy of the gene is added back. The second type of therapy, transcriptional enhancement, entails upregulating an endogenous copy of the gene.

“Both gene replacement and transcriptional enhancement can prove effective in treating monogenetic genetic disorders,” she said.

The third type is transcriptional enhancement, which upregulates an endogenous copy of the gene.

Generalizable gene therapies, the fourth type of gene therapy, involve adding a gene that bypasses either or both ictogenesis and seizure propagation.

As it stands, of the nearly 30 gene therapies currently marketed for neurological disorders, only four are indicated for central nervous system (CNS) disorders. Of the four currently approved by the FDA for seizures, onasemnogene abeparvovec-xioi (Zolgensma) is the only one that truly targets the CNS.

“Developing treatment that targets the CNS requires several important considerations,” Dr. Paradis said. “These include the right model system, appropriate delivery method, a product that can cross the blood-brain barrier (BBB) and target neurons, and the durability of transgene expression.”
 

Epilepsy May Be Amenable to Gene Therapy

To illustrate these principles, Meghan Eller, a PhD candidate at the University of Texas Southwestern in Dallas, shared research on potential new gene therapies that might one day become effective options in treating CNS diseases.

She spoke on viral-mediated gene delivery, specifically by employing adeno-associated virus (AAV) treatment in this arena.

“We capitalized on the ability of viruses to infect genetic materials,” she told the audience. “Viruses are naturally designed to infect cells and deliver genetic material.”

The viruses have three components that make them attractive. One of three viruses is typically used for this work — adenoviruses, lentiviruses, or AAV. The virus type used may be dictated by the gene of interest, meaning whether the gene is expressed, knocked down, or edited. Lastly, several regulatory elements are required; these are the promoter, polyadenylation signal, and the regulatory binding sites necessary for transcription.

“More recent technologies are CRISPR for gene editing, and with promoter, we can control the specific cell type in which gene will be expressed,” Ms. Eller explained.

Regulatory binding sites within a binding site allow regulation within an endogenous transgene.

“AAV genome is naturally single-stranded, but we can introduce a mutation to form a self-complementary cassette,” she said.

Using AAV as a vector for gene delivery has several advantages. First and foremost, it is easy to engineer. Moreover, it can infect dividing and non-dividing cells. It also exhibits long-lasting expression and has a low immune response. In addition, the AAV virion particle has demonstrated activity on cells found in numerous organs, including those of the lymph nodes, adrenal glands, kidneys, various muscle tissue, retinal cells, and digestive system as well as the CNS.

Yet, for all its benefits, the AAV comes with some limitations. For example, it carries as preexisting immunity and exhibits lost expression in dividing cells.

Another important drawback is its package size constraints, as many genes do not fall within its 2.4 kb self-complementary of 4.8 kb single-stranded packaging capacity.

For her research, Ms. Eller and colleagues took into account several considerations for therapy development. The appropriate route helps ensure the therapy reaches critical regions of the brain and that there is adequate expression in the periphery. The immune response becomes important regarding the body’s reaction to non-self proteins — a property, which, at times, can be modified based on dose. Thirdly, expression level and cell type expression can affect the therapy’s activity. In addition, a small amount of the vector will be incorporated into the host DNA.

The fact that AAV can cross the BBB allows for intravenous delivery; however, it limits brain transduction.

“Gene therapy may not be as effective if the delivery window is missed or there is significant neuron loss,” Ms. Eller said.

She stressed the importance of determining the minimal dose necessary for therapeutic benefit to minimize dose-related toxicity. She also distinguished when and why one might choose one type of gene therapy over another, using gene addition to help illustrate her point.

“Gene addition is the most important approach when there is a monogenic gene,” she said. “SLC13A5 and SLC6A1 are examples where gene addition is effective.”

Modulation of ion channels can help the delivery of therapeutic. Such is the case for NaV1.1 and Kv1.1. Finally, AAV can enhance the delivery of therapeutic proteins, as seen with Sema4D and neuropeptide Y.

Ms. Eller explained how the path to developing a gene therapy as an investigational new drug mirrors those historically traveled in conventional drug development to some extent. Preclinical studies offer proof of concept by determining efficacy, dosing, and toxicity in small animals such as mice. From there, studies progress to the pre-IND state by exploring pharmacology and clinical trial design while further investigating toxicity. FDA and regulatory approval require addressing safety concerns and establishing therapeutic benefit, at which point the therapy progresses to the fourth and final stage: clinical trials. During this stage, investigators monitor dosage and safety while evaluating efficacy.Optimal transgene expression regulation requires scientists to create an environment that gives rise to the perfect level of transgene expression. Otherwise, too little protein will result in no therapeutic benefit, while too much protein can become toxic.

Ms. Eller presented her work on investigating whether the reduction of Scn8a is therapeutic, given that epileptogenic Scn8a mutations increase neuronal firing. She treated both the control and Scn8a mice with antisense oligonucleotides (ASO), which depresses neuronal activity. Upon comparing the effects in ASO-treated mice to control, she found that long-term downregulation of Scn8a (50%) prevents seizures and increases survival — regardless of whether ASO therapy was initiated before or during seizure onset.

Additional studies exploring novel and potential gene therapies for epilepsy are on the horizon.

Dr. Paradis is an employee of Severin Therapeutics Inc. Ms Eller has no relevant disclosures.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

— Scientists have made major strides in gene therapy, and experts convened to share their insights on gene therapy development and challenges at the annual meeting of the American Epilepsy Society during a session called “Recent Advances Gene Therapies for the Epilepsies: A Preclinical Perspective.”

Four types of gene therapy

Suzanne Paradis, PhD, cofounder and president of Severin Therapeutics Inc., initiated the session, giving the audience an overview of the four types of gene therapy — the first being gene replacements, where a copy of the gene is added back. The second type of therapy, transcriptional enhancement, entails upregulating an endogenous copy of the gene.

“Both gene replacement and transcriptional enhancement can prove effective in treating monogenetic genetic disorders,” she said.

The third type is transcriptional enhancement, which upregulates an endogenous copy of the gene.

Generalizable gene therapies, the fourth type of gene therapy, involve adding a gene that bypasses either or both ictogenesis and seizure propagation.

As it stands, of the nearly 30 gene therapies currently marketed for neurological disorders, only four are indicated for central nervous system (CNS) disorders. Of the four currently approved by the FDA for seizures, onasemnogene abeparvovec-xioi (Zolgensma) is the only one that truly targets the CNS.

“Developing treatment that targets the CNS requires several important considerations,” Dr. Paradis said. “These include the right model system, appropriate delivery method, a product that can cross the blood-brain barrier (BBB) and target neurons, and the durability of transgene expression.”
 

Epilepsy May Be Amenable to Gene Therapy

To illustrate these principles, Meghan Eller, a PhD candidate at the University of Texas Southwestern in Dallas, shared research on potential new gene therapies that might one day become effective options in treating CNS diseases.

She spoke on viral-mediated gene delivery, specifically by employing adeno-associated virus (AAV) treatment in this arena.

“We capitalized on the ability of viruses to infect genetic materials,” she told the audience. “Viruses are naturally designed to infect cells and deliver genetic material.”

The viruses have three components that make them attractive. One of three viruses is typically used for this work — adenoviruses, lentiviruses, or AAV. The virus type used may be dictated by the gene of interest, meaning whether the gene is expressed, knocked down, or edited. Lastly, several regulatory elements are required; these are the promoter, polyadenylation signal, and the regulatory binding sites necessary for transcription.

“More recent technologies are CRISPR for gene editing, and with promoter, we can control the specific cell type in which gene will be expressed,” Ms. Eller explained.

Regulatory binding sites within a binding site allow regulation within an endogenous transgene.

“AAV genome is naturally single-stranded, but we can introduce a mutation to form a self-complementary cassette,” she said.

Using AAV as a vector for gene delivery has several advantages. First and foremost, it is easy to engineer. Moreover, it can infect dividing and non-dividing cells. It also exhibits long-lasting expression and has a low immune response. In addition, the AAV virion particle has demonstrated activity on cells found in numerous organs, including those of the lymph nodes, adrenal glands, kidneys, various muscle tissue, retinal cells, and digestive system as well as the CNS.

Yet, for all its benefits, the AAV comes with some limitations. For example, it carries as preexisting immunity and exhibits lost expression in dividing cells.

Another important drawback is its package size constraints, as many genes do not fall within its 2.4 kb self-complementary of 4.8 kb single-stranded packaging capacity.

For her research, Ms. Eller and colleagues took into account several considerations for therapy development. The appropriate route helps ensure the therapy reaches critical regions of the brain and that there is adequate expression in the periphery. The immune response becomes important regarding the body’s reaction to non-self proteins — a property, which, at times, can be modified based on dose. Thirdly, expression level and cell type expression can affect the therapy’s activity. In addition, a small amount of the vector will be incorporated into the host DNA.

The fact that AAV can cross the BBB allows for intravenous delivery; however, it limits brain transduction.

“Gene therapy may not be as effective if the delivery window is missed or there is significant neuron loss,” Ms. Eller said.

She stressed the importance of determining the minimal dose necessary for therapeutic benefit to minimize dose-related toxicity. She also distinguished when and why one might choose one type of gene therapy over another, using gene addition to help illustrate her point.

“Gene addition is the most important approach when there is a monogenic gene,” she said. “SLC13A5 and SLC6A1 are examples where gene addition is effective.”

Modulation of ion channels can help the delivery of therapeutic. Such is the case for NaV1.1 and Kv1.1. Finally, AAV can enhance the delivery of therapeutic proteins, as seen with Sema4D and neuropeptide Y.

Ms. Eller explained how the path to developing a gene therapy as an investigational new drug mirrors those historically traveled in conventional drug development to some extent. Preclinical studies offer proof of concept by determining efficacy, dosing, and toxicity in small animals such as mice. From there, studies progress to the pre-IND state by exploring pharmacology and clinical trial design while further investigating toxicity. FDA and regulatory approval require addressing safety concerns and establishing therapeutic benefit, at which point the therapy progresses to the fourth and final stage: clinical trials. During this stage, investigators monitor dosage and safety while evaluating efficacy.Optimal transgene expression regulation requires scientists to create an environment that gives rise to the perfect level of transgene expression. Otherwise, too little protein will result in no therapeutic benefit, while too much protein can become toxic.

Ms. Eller presented her work on investigating whether the reduction of Scn8a is therapeutic, given that epileptogenic Scn8a mutations increase neuronal firing. She treated both the control and Scn8a mice with antisense oligonucleotides (ASO), which depresses neuronal activity. Upon comparing the effects in ASO-treated mice to control, she found that long-term downregulation of Scn8a (50%) prevents seizures and increases survival — regardless of whether ASO therapy was initiated before or during seizure onset.

Additional studies exploring novel and potential gene therapies for epilepsy are on the horizon.

Dr. Paradis is an employee of Severin Therapeutics Inc. Ms Eller has no relevant disclosures.

— Scientists have made major strides in gene therapy, and experts convened to share their insights on gene therapy development and challenges at the annual meeting of the American Epilepsy Society during a session called “Recent Advances Gene Therapies for the Epilepsies: A Preclinical Perspective.”

Four types of gene therapy

Suzanne Paradis, PhD, cofounder and president of Severin Therapeutics Inc., initiated the session, giving the audience an overview of the four types of gene therapy — the first being gene replacements, where a copy of the gene is added back. The second type of therapy, transcriptional enhancement, entails upregulating an endogenous copy of the gene.

“Both gene replacement and transcriptional enhancement can prove effective in treating monogenetic genetic disorders,” she said.

The third type is transcriptional enhancement, which upregulates an endogenous copy of the gene.

Generalizable gene therapies, the fourth type of gene therapy, involve adding a gene that bypasses either or both ictogenesis and seizure propagation.

As it stands, of the nearly 30 gene therapies currently marketed for neurological disorders, only four are indicated for central nervous system (CNS) disorders. Of the four currently approved by the FDA for seizures, onasemnogene abeparvovec-xioi (Zolgensma) is the only one that truly targets the CNS.

“Developing treatment that targets the CNS requires several important considerations,” Dr. Paradis said. “These include the right model system, appropriate delivery method, a product that can cross the blood-brain barrier (BBB) and target neurons, and the durability of transgene expression.”
 

Epilepsy May Be Amenable to Gene Therapy

To illustrate these principles, Meghan Eller, a PhD candidate at the University of Texas Southwestern in Dallas, shared research on potential new gene therapies that might one day become effective options in treating CNS diseases.

She spoke on viral-mediated gene delivery, specifically by employing adeno-associated virus (AAV) treatment in this arena.

“We capitalized on the ability of viruses to infect genetic materials,” she told the audience. “Viruses are naturally designed to infect cells and deliver genetic material.”

The viruses have three components that make them attractive. One of three viruses is typically used for this work — adenoviruses, lentiviruses, or AAV. The virus type used may be dictated by the gene of interest, meaning whether the gene is expressed, knocked down, or edited. Lastly, several regulatory elements are required; these are the promoter, polyadenylation signal, and the regulatory binding sites necessary for transcription.

“More recent technologies are CRISPR for gene editing, and with promoter, we can control the specific cell type in which gene will be expressed,” Ms. Eller explained.

Regulatory binding sites within a binding site allow regulation within an endogenous transgene.

“AAV genome is naturally single-stranded, but we can introduce a mutation to form a self-complementary cassette,” she said.

Using AAV as a vector for gene delivery has several advantages. First and foremost, it is easy to engineer. Moreover, it can infect dividing and non-dividing cells. It also exhibits long-lasting expression and has a low immune response. In addition, the AAV virion particle has demonstrated activity on cells found in numerous organs, including those of the lymph nodes, adrenal glands, kidneys, various muscle tissue, retinal cells, and digestive system as well as the CNS.

Yet, for all its benefits, the AAV comes with some limitations. For example, it carries as preexisting immunity and exhibits lost expression in dividing cells.

Another important drawback is its package size constraints, as many genes do not fall within its 2.4 kb self-complementary of 4.8 kb single-stranded packaging capacity.

For her research, Ms. Eller and colleagues took into account several considerations for therapy development. The appropriate route helps ensure the therapy reaches critical regions of the brain and that there is adequate expression in the periphery. The immune response becomes important regarding the body’s reaction to non-self proteins — a property, which, at times, can be modified based on dose. Thirdly, expression level and cell type expression can affect the therapy’s activity. In addition, a small amount of the vector will be incorporated into the host DNA.

The fact that AAV can cross the BBB allows for intravenous delivery; however, it limits brain transduction.

“Gene therapy may not be as effective if the delivery window is missed or there is significant neuron loss,” Ms. Eller said.

She stressed the importance of determining the minimal dose necessary for therapeutic benefit to minimize dose-related toxicity. She also distinguished when and why one might choose one type of gene therapy over another, using gene addition to help illustrate her point.

“Gene addition is the most important approach when there is a monogenic gene,” she said. “SLC13A5 and SLC6A1 are examples where gene addition is effective.”

Modulation of ion channels can help the delivery of therapeutic. Such is the case for NaV1.1 and Kv1.1. Finally, AAV can enhance the delivery of therapeutic proteins, as seen with Sema4D and neuropeptide Y.

Ms. Eller explained how the path to developing a gene therapy as an investigational new drug mirrors those historically traveled in conventional drug development to some extent. Preclinical studies offer proof of concept by determining efficacy, dosing, and toxicity in small animals such as mice. From there, studies progress to the pre-IND state by exploring pharmacology and clinical trial design while further investigating toxicity. FDA and regulatory approval require addressing safety concerns and establishing therapeutic benefit, at which point the therapy progresses to the fourth and final stage: clinical trials. During this stage, investigators monitor dosage and safety while evaluating efficacy.Optimal transgene expression regulation requires scientists to create an environment that gives rise to the perfect level of transgene expression. Otherwise, too little protein will result in no therapeutic benefit, while too much protein can become toxic.

Ms. Eller presented her work on investigating whether the reduction of Scn8a is therapeutic, given that epileptogenic Scn8a mutations increase neuronal firing. She treated both the control and Scn8a mice with antisense oligonucleotides (ASO), which depresses neuronal activity. Upon comparing the effects in ASO-treated mice to control, she found that long-term downregulation of Scn8a (50%) prevents seizures and increases survival — regardless of whether ASO therapy was initiated before or during seizure onset.

Additional studies exploring novel and potential gene therapies for epilepsy are on the horizon.

Dr. Paradis is an employee of Severin Therapeutics Inc. Ms Eller has no relevant disclosures.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>166483</fileName> <TBEID>0C04DEF2.SIG</TBEID> <TBUniqueIdentifier>MD_0C04DEF2</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>AES: Epilepsy gene therapy</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240105T152801</QCDate> <firstPublished>20240105T153316</firstPublished> <LastPublished>20240105T153316</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240105T153316</CMSDate> <articleSource>FROM AES 2023</articleSource> <facebookInfo/> <meetingNumber>3271-23</meetingNumber> <byline>Frieda Wiley</byline> <bylineText>FRIEDA WILEY, PHARMD</bylineText> <bylineFull>FRIEDA WILEY, PHARMD</bylineFull> <bylineTitleText>MDedge News</bylineTitleText> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Ongoing research is focused on new gene therapies that might one day become effective options in treating epilepsy and other CNS diseases.</metaDescription> <articlePDF/> <teaserImage/> <teaser> <span class="tag metaDescription">Ongoing research is focused on new gene therapies that might one day become effective options in treating epilepsy and other CNS diseases.</span> </teaser> <title>Despite Few CNS Gene Therapies for Epilepsy, New Research Offers Hope</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2024</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>erc</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term>356</term> <term canonical="true">22</term> </publications> <sections> <term canonical="true">53</term> <term>39313</term> </sections> <topics> <term>61642</term> <term canonical="true">211</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Despite Few CNS Gene Therapies for Epilepsy, New Research Offers Hope</title> <deck/> </itemMeta> <itemContent> <p><span class="dateline">ORLANDO</span> — Scientists have made major strides in gene therapy, and experts convened to share their insights on gene therapy development and challenges at the annual meeting of the American Epilepsy Society during a session called “Recent Advances <span class="il">Gene</span> <span class="il">Therapies</span> for the Epilepsies: A Preclinical Perspective.”</p> <h2>Four types of gene therapy</h2> <p>Susan Paradis, PhD, cofounder and president of Severin Therapeutics Inc., initiated the session, giving the audience an overview of the four types of gene therapy — the first being gene replacements, where a copy of the gene is added back. The second type of therapy, transcriptional enhancement, entails upregulating an endogenous copy of the gene. </p> <p>“Both gene replacement and transcriptional enhancement can prove effective in treating monogenetic genetic disorders,” she said. <br/><br/>The third type is transcriptional enhancement, which upregulates an endogenous copy of the gene.<br/><br/>Generalizable gene therapies, the fourth type of gene therapy, involve adding a gene that bypasses either or both ictogenesis and seizure propagation. <br/><br/>As it stands, of the nearly 30 gene therapies currently marketed for neurological disorders, only four are indicated for central nervous system (CNS) disorders. Of the four currently approved by the FDA for seizures, onasemnogene abeparvovec-xioi (Zolgensma) is the only one that truly targets the CNS.<br/><br/>“Developing treatment that targets the CNS requires several important considerations,” Dr. Paradis said. “These include the right model system, appropriate delivery method, a product that can cross the blood-brain barrier (BBB) and target neurons, and the durability of transgene expression.” <br/><br/></p> <h2>Epilepsy May Be Amenable to Gene Therapy</h2> <p>To illustrate these principles, Meghan Eller, a PhD candidate at the University of Texas Southwestern in Dallas, shared research on potential new gene therapies that might one day become effective options in treating CNS diseases.</p> <p>She spoke on viral-mediated gene delivery, specifically by employing adeno-associated virus (AAV) treatment in this arena.<br/><br/>“We capitalized on the ability of viruses to infect genetic materials,” she told the audience. “Viruses are naturally designed to infect cells and deliver genetic material.”<br/><br/>The viruses have three components that make them attractive. One of three viruses is typically used for this work — adenoviruses, lentiviruses, or AAV. The virus type used may be dictated by the gene of interest, meaning whether the gene is expressed, knocked down, or edited. Lastly, several regulatory elements are required; these are the promoter, polyadenylation signal, and the regulatory binding sites necessary for transcription.<br/><br/>“More recent technologies are CRISPR for gene editing, and with promoter, we can control the specific cell type in which gene will be expressed,” Ms. Eller explained. <br/><br/>Regulatory binding sites within a binding site allow regulation within an endogenous transgene.<br/><br/>“AAV genome is naturally single-stranded, but we can introduce a mutation to form a self-complementary cassette,” she said.<br/><br/>Using AAV as a vector for gene delivery has several advantages. First and foremost, it is easy to engineer. Moreover, it can infect dividing and non-dividing cells. It also exhibits long-lasting expression and has a low immune response. In addition, the AAV virion particle has demonstrated activity on cells found in numerous organs, including those of the lymph nodes, adrenal glands, kidneys, various muscle tissue, retinal cells, and digestive system as well as the CNS. <br/><br/>Yet, for all its benefits, the AAV comes with some limitations. For example, it carries as preexisting immunity and exhibits lost expression in dividing cells. <br/><br/>Another important drawback is its package size constraints, as many genes do not fall within its 2.4 kb self-complementary of 4.8 kb single-stranded packaging capacity.<br/><br/>For her research, Ms. Eller and colleagues took into account several considerations for therapy development. The appropriate route helps ensure the therapy reaches critical regions of the brain and that there is adequate expression in the periphery. The immune response becomes important regarding the body’s reaction to non-self proteins — a property, which, at times, can be modified based on dose. Thirdly, expression level and cell type expression can affect the therapy’s activity. In addition, a small amount of the vector will be incorporated into the host DNA.<br/><br/>The fact that AAV can cross the BBB allows for intravenous delivery; however, it limits brain transduction. <br/><br/>“Gene therapy may not be as effective if the delivery window is missed or there is significant neuron loss,” Ms. Eller said.<br/><br/>She stressed the importance of determining the minimal dose necessary for therapeutic benefit to minimize dose-related toxicity. She also distinguished when and why one might choose one type of gene therapy over another, using gene addition to help illustrate her point. <br/><br/>“Gene addition is the most important approach when there is a monogenic gene,” she said. “SLC13A5 and SLC6A1 are examples where gene addition is effective.” <br/><br/>Modulation of ion channels can help the delivery of therapeutic. Such is the case for NaV1.1 and Kv1.1. Finally, AAV can enhance the delivery of therapeutic proteins, as seen with Sema4D and neuropeptide Y. <br/><br/>Ms. Eller explained how the path to developing a gene therapy as an investigational new drug mirrors those historically traveled in conventional drug development to some extent. Preclinical studies offer proof of concept by determining efficacy, dosing, and toxicity in small animals such as mice. From there, studies progress to the pre-IND state by exploring pharmacology and clinical trial design while further investigating toxicity. FDA and regulatory approval require addressing safety concerns and establishing therapeutic benefit, at which point the therapy progresses to the fourth and final stage: clinical trials. During this stage, investigators monitor dosage and safety while evaluating efficacy.Optimal transgene expression regulation requires scientists to create an environment that gives rise to the perfect level of transgene expression. Otherwise, too little protein will result in no therapeutic benefit, while too much protein can become toxic. <br/><br/>Ms. Eller presented her work on investigating whether the reduction of Scn8a is therapeutic, given that epileptogenic Scn8a mutations increase neuronal firing. She treated both the control and Scn8a mice with antisense oligonucleotides (ASO), which depresses neuronal activity. Upon comparing the effects in ASO-treated mice to control, she found that long-term downregulation of Scn8a (50%) prevents seizures and increases survival — regardless of whether ASO therapy was initiated before or during seizure onset. <br/><br/>Additional studies exploring novel and potential gene therapies for epilepsy are on the horizon.<br/><br/>Dr. Paradis is an employee of Severin Therapeutics Inc. Ms Eller has no relevant disclosures. </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM AES 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Poverty tied to poor cognition in patients with epilepsy

Article Type
Changed
Thu, 12/07/2023 - 13:42

ORLANDO — Older people with epilepsy who live in deprived neighborhoods with lower socioeconomic status, fewer educational opportunities, and less access to health care have poorer memory, executive function, and processing speed than those living in more affluent areas, early research suggests.

Seniors with epilepsy present with multiple comorbidities, including, for example, hypertension and diabetes, and they are at increased risk of developing dementia, said study investigator Anny Reyes, PhD, a postdoctoral scholar at the University of California at San Diego.

Past research has shown neighborhood disadvantage is associated with numerous adverse health outcomes, including an increased risk for developing Alzheimer’s disease and related dementias (ADRD).

“We already know epilepsy on its own increases risks for dementia, and when you add disadvantaged to that, it’s going to increase the risk even more,” said Dr. Reyes.

Neurologists should ask their older patients with epilepsy, many of whom live alone, about food insecurity and access to resources “not just within the hospital system but also within their community,” she said.

The findings were presented at the annual meeting of the American Epilepsy Society.
 

Proxy Measure of Disadvantage

The incidence and prevalence of epilepsy increases with age. Older adults represent the fastest growing segment of individuals with epilepsy, said Dr. Reyes.

The new study included 40 patients with focal epilepsy, average age 67 years, from three areas: San Diego, California; Madison, Wisconsin; and Cleveland, Ohio.

Researchers collected clinical and sociodemographic information as well as vascular biomarkers. They also gathered individual-level data, including income, parental education levels, details on childhood upbringing, etc.

Using residential addresses, investigators determined the area deprivation index (ADI) value for study participants. The ADI is a proxy measure for neighborhood-level socioeconomic disadvantage that captures factors such a poverty, employment, housing, and education opportunities.

ADI values range from 1 to 10, with a higher number indicating greater neighborhood disadvantage. About 30% of the cohort had an ADI decile greater than 6.

Researchers divided subjects into Most Disadvantaged (ADI greater than 7) and Least Disadvantaged (AD 7 or less). The two groups were similar with regard to age, education level, and race/ethnicity.

But those from the most disadvantaged areas were younger, taking more antiseizure medications, had fewer years of education, lower levels of father’s education, less personal and family income, and were less likely to be diagnosed with hypertension.

Study subjects completed neuropsychological testing, including:

  • Measures of learning (Rey Auditory Verbal Learning Test [RAVLT] Learning Over Trials; Wechsler Memory Scale 4th Edition [WMS-4] Logical Memory [LM] Story B immediate; and WMS-4 Visual Reproduction [VR] immediate)
  • Memory (RAVLT delayed recall, WMS-4 LM delayed recall, and WMS-4 VR delayed recall)
  • Language (Multilingual Naming Test, Auditory Naming Test, and animal fluency)
  • Executive function/processing speed (Letter fluency and Trail-Making Test Parts A and B)

The study found a correlation between higher ADI (most disadvantaged) and poorer performance on learning (Spearman rho: -0.433; 95% CI -0.664 to -0.126; P = .006), memory (r = -0.496; 95% CI -0.707 to -0.205; P = .001), and executive function/processes speed (r = -0.315; 95% CI -0.577 to 0.006; P = .048), but no significant association with language.

Looking at individual-level data, the study found memory and processing speed “were driving the relationship, and again, patients had worse performance when they were coming from the most disadvantaged neighborhoods,” said Dr. Reyes.

The investigators also examined mood, including depression and anxiety, and subjective complaints of cognitive problems. “We found those patients residing in the most disadvantaged neighborhoods complained more about memory problems,” she said.

The results underscore the need for community-level interventions “that could provide resources in support of these older adults and their families and connect them to services we know are good for brain health,” said Dr. Reyes.

Alzheimer’s disease experts “have done a really good job of this, but this is new for epilepsy,” she added. “This gives us a great opportunity to kind of bridge the worlds of dementia and epilepsy.”
 

 

 

Novel Research

Commenting on the research, Rani Sarkis, MD, assistant professor of neurology, Brigham and Women’s Hospital, Boston, said the study is “very useful” as it ties social determinants of health to cognition.

“We have not been doing that” in people with epilepsy, he said.

The study, one of the first to look at the link between disadvantaged neighborhoods and cognitive impairment, “has very important” public health implications, including the need to consider access to activities that promote cognitive resilience and other brain health initiatives, said Dr. Sarkis.

Another larger study that looked at neighborhood deprivation and cognition in epilepsy was also presented at the AES meeting and published earlier this year in the journal Neurology.

That study included 800 patients with pharmaco-resistant temporal lobe epilepsy being evaluated for surgery at the Cleveland Clinic, mean age about 38 years. It examined numerous cognitive domains as well as depression and anxiety in relation to ADI generated by patient addresses and split into quintiles from least to most disadvantaged.

After controlling for covariants, the study found scores for all cognitive domains were significantly worse in the most disadvantaged quintile except for executive function, which was close to reaching significance (P = .052), said lead author Robyn M. Busch, PhD, a clinical neuropsychologist in the Epilepsy Center, Department of Neurology, Cleveland Clinic.

The study also found people in the most disadvantaged areas had more symptoms of depression and anxiety compared with people in the least disadvantaged areas, said Busch.
 

A Complex Issue

Although the exact mechanism tying disadvantaged areas to cognition in epilepsy isn’t fully understood, having less access to health care and educational opportunities, poor nutrition, and being under chronic stress “are all things that affect the brain,” said Dr. Busch.

“This is super complex and it’s going to be really difficult to tease apart, but we’d like to look at imaging data to see if it’s something structural, if there are functional changes in the brain or something that might help us understand this better.”

But it’s also possible that having epilepsy “might be pushing people into environments” that offer fewer employment and educational opportunities and less access to resources, she said.

The study authors and Dr. Sarkis report no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

ORLANDO — Older people with epilepsy who live in deprived neighborhoods with lower socioeconomic status, fewer educational opportunities, and less access to health care have poorer memory, executive function, and processing speed than those living in more affluent areas, early research suggests.

Seniors with epilepsy present with multiple comorbidities, including, for example, hypertension and diabetes, and they are at increased risk of developing dementia, said study investigator Anny Reyes, PhD, a postdoctoral scholar at the University of California at San Diego.

Past research has shown neighborhood disadvantage is associated with numerous adverse health outcomes, including an increased risk for developing Alzheimer’s disease and related dementias (ADRD).

“We already know epilepsy on its own increases risks for dementia, and when you add disadvantaged to that, it’s going to increase the risk even more,” said Dr. Reyes.

Neurologists should ask their older patients with epilepsy, many of whom live alone, about food insecurity and access to resources “not just within the hospital system but also within their community,” she said.

The findings were presented at the annual meeting of the American Epilepsy Society.
 

Proxy Measure of Disadvantage

The incidence and prevalence of epilepsy increases with age. Older adults represent the fastest growing segment of individuals with epilepsy, said Dr. Reyes.

The new study included 40 patients with focal epilepsy, average age 67 years, from three areas: San Diego, California; Madison, Wisconsin; and Cleveland, Ohio.

Researchers collected clinical and sociodemographic information as well as vascular biomarkers. They also gathered individual-level data, including income, parental education levels, details on childhood upbringing, etc.

Using residential addresses, investigators determined the area deprivation index (ADI) value for study participants. The ADI is a proxy measure for neighborhood-level socioeconomic disadvantage that captures factors such a poverty, employment, housing, and education opportunities.

ADI values range from 1 to 10, with a higher number indicating greater neighborhood disadvantage. About 30% of the cohort had an ADI decile greater than 6.

Researchers divided subjects into Most Disadvantaged (ADI greater than 7) and Least Disadvantaged (AD 7 or less). The two groups were similar with regard to age, education level, and race/ethnicity.

But those from the most disadvantaged areas were younger, taking more antiseizure medications, had fewer years of education, lower levels of father’s education, less personal and family income, and were less likely to be diagnosed with hypertension.

Study subjects completed neuropsychological testing, including:

  • Measures of learning (Rey Auditory Verbal Learning Test [RAVLT] Learning Over Trials; Wechsler Memory Scale 4th Edition [WMS-4] Logical Memory [LM] Story B immediate; and WMS-4 Visual Reproduction [VR] immediate)
  • Memory (RAVLT delayed recall, WMS-4 LM delayed recall, and WMS-4 VR delayed recall)
  • Language (Multilingual Naming Test, Auditory Naming Test, and animal fluency)
  • Executive function/processing speed (Letter fluency and Trail-Making Test Parts A and B)

The study found a correlation between higher ADI (most disadvantaged) and poorer performance on learning (Spearman rho: -0.433; 95% CI -0.664 to -0.126; P = .006), memory (r = -0.496; 95% CI -0.707 to -0.205; P = .001), and executive function/processes speed (r = -0.315; 95% CI -0.577 to 0.006; P = .048), but no significant association with language.

Looking at individual-level data, the study found memory and processing speed “were driving the relationship, and again, patients had worse performance when they were coming from the most disadvantaged neighborhoods,” said Dr. Reyes.

The investigators also examined mood, including depression and anxiety, and subjective complaints of cognitive problems. “We found those patients residing in the most disadvantaged neighborhoods complained more about memory problems,” she said.

The results underscore the need for community-level interventions “that could provide resources in support of these older adults and their families and connect them to services we know are good for brain health,” said Dr. Reyes.

Alzheimer’s disease experts “have done a really good job of this, but this is new for epilepsy,” she added. “This gives us a great opportunity to kind of bridge the worlds of dementia and epilepsy.”
 

 

 

Novel Research

Commenting on the research, Rani Sarkis, MD, assistant professor of neurology, Brigham and Women’s Hospital, Boston, said the study is “very useful” as it ties social determinants of health to cognition.

“We have not been doing that” in people with epilepsy, he said.

The study, one of the first to look at the link between disadvantaged neighborhoods and cognitive impairment, “has very important” public health implications, including the need to consider access to activities that promote cognitive resilience and other brain health initiatives, said Dr. Sarkis.

Another larger study that looked at neighborhood deprivation and cognition in epilepsy was also presented at the AES meeting and published earlier this year in the journal Neurology.

That study included 800 patients with pharmaco-resistant temporal lobe epilepsy being evaluated for surgery at the Cleveland Clinic, mean age about 38 years. It examined numerous cognitive domains as well as depression and anxiety in relation to ADI generated by patient addresses and split into quintiles from least to most disadvantaged.

After controlling for covariants, the study found scores for all cognitive domains were significantly worse in the most disadvantaged quintile except for executive function, which was close to reaching significance (P = .052), said lead author Robyn M. Busch, PhD, a clinical neuropsychologist in the Epilepsy Center, Department of Neurology, Cleveland Clinic.

The study also found people in the most disadvantaged areas had more symptoms of depression and anxiety compared with people in the least disadvantaged areas, said Busch.
 

A Complex Issue

Although the exact mechanism tying disadvantaged areas to cognition in epilepsy isn’t fully understood, having less access to health care and educational opportunities, poor nutrition, and being under chronic stress “are all things that affect the brain,” said Dr. Busch.

“This is super complex and it’s going to be really difficult to tease apart, but we’d like to look at imaging data to see if it’s something structural, if there are functional changes in the brain or something that might help us understand this better.”

But it’s also possible that having epilepsy “might be pushing people into environments” that offer fewer employment and educational opportunities and less access to resources, she said.

The study authors and Dr. Sarkis report no relevant financial relationships.

A version of this article first appeared on Medscape.com.

ORLANDO — Older people with epilepsy who live in deprived neighborhoods with lower socioeconomic status, fewer educational opportunities, and less access to health care have poorer memory, executive function, and processing speed than those living in more affluent areas, early research suggests.

Seniors with epilepsy present with multiple comorbidities, including, for example, hypertension and diabetes, and they are at increased risk of developing dementia, said study investigator Anny Reyes, PhD, a postdoctoral scholar at the University of California at San Diego.

Past research has shown neighborhood disadvantage is associated with numerous adverse health outcomes, including an increased risk for developing Alzheimer’s disease and related dementias (ADRD).

“We already know epilepsy on its own increases risks for dementia, and when you add disadvantaged to that, it’s going to increase the risk even more,” said Dr. Reyes.

Neurologists should ask their older patients with epilepsy, many of whom live alone, about food insecurity and access to resources “not just within the hospital system but also within their community,” she said.

The findings were presented at the annual meeting of the American Epilepsy Society.
 

Proxy Measure of Disadvantage

The incidence and prevalence of epilepsy increases with age. Older adults represent the fastest growing segment of individuals with epilepsy, said Dr. Reyes.

The new study included 40 patients with focal epilepsy, average age 67 years, from three areas: San Diego, California; Madison, Wisconsin; and Cleveland, Ohio.

Researchers collected clinical and sociodemographic information as well as vascular biomarkers. They also gathered individual-level data, including income, parental education levels, details on childhood upbringing, etc.

Using residential addresses, investigators determined the area deprivation index (ADI) value for study participants. The ADI is a proxy measure for neighborhood-level socioeconomic disadvantage that captures factors such a poverty, employment, housing, and education opportunities.

ADI values range from 1 to 10, with a higher number indicating greater neighborhood disadvantage. About 30% of the cohort had an ADI decile greater than 6.

Researchers divided subjects into Most Disadvantaged (ADI greater than 7) and Least Disadvantaged (AD 7 or less). The two groups were similar with regard to age, education level, and race/ethnicity.

But those from the most disadvantaged areas were younger, taking more antiseizure medications, had fewer years of education, lower levels of father’s education, less personal and family income, and were less likely to be diagnosed with hypertension.

Study subjects completed neuropsychological testing, including:

  • Measures of learning (Rey Auditory Verbal Learning Test [RAVLT] Learning Over Trials; Wechsler Memory Scale 4th Edition [WMS-4] Logical Memory [LM] Story B immediate; and WMS-4 Visual Reproduction [VR] immediate)
  • Memory (RAVLT delayed recall, WMS-4 LM delayed recall, and WMS-4 VR delayed recall)
  • Language (Multilingual Naming Test, Auditory Naming Test, and animal fluency)
  • Executive function/processing speed (Letter fluency and Trail-Making Test Parts A and B)

The study found a correlation between higher ADI (most disadvantaged) and poorer performance on learning (Spearman rho: -0.433; 95% CI -0.664 to -0.126; P = .006), memory (r = -0.496; 95% CI -0.707 to -0.205; P = .001), and executive function/processes speed (r = -0.315; 95% CI -0.577 to 0.006; P = .048), but no significant association with language.

Looking at individual-level data, the study found memory and processing speed “were driving the relationship, and again, patients had worse performance when they were coming from the most disadvantaged neighborhoods,” said Dr. Reyes.

The investigators also examined mood, including depression and anxiety, and subjective complaints of cognitive problems. “We found those patients residing in the most disadvantaged neighborhoods complained more about memory problems,” she said.

The results underscore the need for community-level interventions “that could provide resources in support of these older adults and their families and connect them to services we know are good for brain health,” said Dr. Reyes.

Alzheimer’s disease experts “have done a really good job of this, but this is new for epilepsy,” she added. “This gives us a great opportunity to kind of bridge the worlds of dementia and epilepsy.”
 

 

 

Novel Research

Commenting on the research, Rani Sarkis, MD, assistant professor of neurology, Brigham and Women’s Hospital, Boston, said the study is “very useful” as it ties social determinants of health to cognition.

“We have not been doing that” in people with epilepsy, he said.

The study, one of the first to look at the link between disadvantaged neighborhoods and cognitive impairment, “has very important” public health implications, including the need to consider access to activities that promote cognitive resilience and other brain health initiatives, said Dr. Sarkis.

Another larger study that looked at neighborhood deprivation and cognition in epilepsy was also presented at the AES meeting and published earlier this year in the journal Neurology.

That study included 800 patients with pharmaco-resistant temporal lobe epilepsy being evaluated for surgery at the Cleveland Clinic, mean age about 38 years. It examined numerous cognitive domains as well as depression and anxiety in relation to ADI generated by patient addresses and split into quintiles from least to most disadvantaged.

After controlling for covariants, the study found scores for all cognitive domains were significantly worse in the most disadvantaged quintile except for executive function, which was close to reaching significance (P = .052), said lead author Robyn M. Busch, PhD, a clinical neuropsychologist in the Epilepsy Center, Department of Neurology, Cleveland Clinic.

The study also found people in the most disadvantaged areas had more symptoms of depression and anxiety compared with people in the least disadvantaged areas, said Busch.
 

A Complex Issue

Although the exact mechanism tying disadvantaged areas to cognition in epilepsy isn’t fully understood, having less access to health care and educational opportunities, poor nutrition, and being under chronic stress “are all things that affect the brain,” said Dr. Busch.

“This is super complex and it’s going to be really difficult to tease apart, but we’d like to look at imaging data to see if it’s something structural, if there are functional changes in the brain or something that might help us understand this better.”

But it’s also possible that having epilepsy “might be pushing people into environments” that offer fewer employment and educational opportunities and less access to resources, she said.

The study authors and Dr. Sarkis report no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>166214</fileName> <TBEID>0C04D972.SIG</TBEID> <TBUniqueIdentifier>MD_0C04D972</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>AES: Poverty epilepsy</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20231207T112515</QCDate> <firstPublished>20231207T133950</firstPublished> <LastPublished>20231207T133950</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20231207T133950</CMSDate> <articleSource>FROM AES 2023</articleSource> <facebookInfo/> <meetingNumber>3271-23</meetingNumber> <byline>Pauline Anderson</byline> <bylineText>PAULINE ANDERSON</bylineText> <bylineFull>PAULINE ANDERSON</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Older people with epilepsy who live in deprived neighborhoods with lower socioeconomic status, fewer educational opportunities, and less access to health care h</metaDescription> <articlePDF/> <teaserImage/> <teaser>Clinicians should ask their older patients with epilepsy, many of whom live alone, about food insecurity and access to resources “not just within the hospital system but also within their community.”</teaser> <title>Poverty Tied to Poor Cognition in Patients With Epilepsy</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear>2023</pubPubdateYear> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName>January 2021</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>erc</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">22</term> <term>356</term> </publications> <sections> <term canonical="true">53</term> <term>39313</term> </sections> <topics> <term canonical="true">211</term> <term>66772</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Poverty Tied to Poor Cognition in Patients With Epilepsy</title> <deck/> </itemMeta> <itemContent> <p>ORLANDO — <span class="tag metaDescription">Older people with epilepsy who live in deprived neighborhoods with lower socioeconomic status, fewer educational opportunities, and less access to health care have poorer memory, executive function, and processing speed than those living in more affluent areas</span>, early research suggests.</p> <p>Seniors with epilepsy present with multiple comorbidities, including, for example, hypertension and diabetes, and they are at increased risk of developing dementia, said study investigator Anny Reyes, PhD, a postdoctoral scholar at the University of California at San Diego.<br/><br/>Past research has shown neighborhood disadvantage is associated with numerous adverse health outcomes, including an increased risk for developing Alzheimer’s disease and related dementias (ADRD).<br/><br/>“We already know epilepsy on its own increases risks for dementia, and when you add disadvantaged to that, it’s going to increase the risk even more,” said Dr. Reyes.<br/><br/>Neurologists should ask their older patients with epilepsy, many of whom live alone, about food insecurity and access to resources “not just within the hospital system but also within their community,” she said.<br/><br/>The findings were presented at the annual meeting of the American Epilepsy Society.<br/><br/></p> <h2>Proxy Measure of Disadvantage</h2> <p>The incidence and prevalence of epilepsy increases with age. Older adults represent the fastest growing segment of individuals with epilepsy, said Dr. Reyes.</p> <p>The new study included 40 patients with focal epilepsy, average age 67 years, from three areas: San Diego, California; Madison, Wisconsin; and Cleveland, Ohio.<br/><br/>Researchers collected clinical and sociodemographic information as well as vascular biomarkers. They also gathered individual-level data, including income, parental education levels, details on childhood upbringing, etc.<br/><br/>Using residential addresses, investigators determined the area deprivation index (ADI) value for study participants. The ADI is a proxy measure for neighborhood-level socioeconomic disadvantage that captures factors such a poverty, employment, housing, and education opportunities.<br/><br/>ADI values range from 1 to 10, with a higher number indicating greater neighborhood disadvantage. About 30% of the cohort had an ADI decile greater than 6.<br/><br/>Researchers divided subjects into Most Disadvantaged (ADI greater than 7) and Least Disadvantaged (AD 7 or less). The two groups were similar with regard to age, education level, and race/ethnicity.<br/><br/>But those from the most disadvantaged areas were younger, taking more antiseizure medications, had fewer years of education, lower levels of father’s education, less personal and family income, and were less likely to be diagnosed with hypertension.<br/><br/>Study subjects completed neuropsychological testing, including:</p> <ul class="body"> <li>Measures of learning (Rey Auditory Verbal Learning Test [RAVLT] Learning Over Trials; Wechsler Memory Scale 4th Edition [WMS-4] Logical Memory [LM] Story B immediate; and WMS-4 Visual Reproduction [VR] immediate)</li> <li>Memory (RAVLT delayed recall, WMS-4 LM delayed recall, and WMS-4 VR delayed recall)</li> <li>Language (Multilingual Naming Test, Auditory Naming Test, and animal fluency)</li> <li>Executive function/processing speed (Letter fluency and Trail-Making Test Parts A and B)</li> </ul> <p>The study found a correlation between higher ADI (most disadvantaged) and poorer performance on learning (Spearman rho: -0.433; 95% CI -0.664 to -0.126; P = .006), memory (r = -0.496; 95% CI -0.707 to -0.205; P = .001), and executive function/processes speed (r = -0.315; 95% CI -0.577 to 0.006; P = .048), but no significant association with language.<br/><br/>Looking at individual-level data, the study found memory and processing speed “were driving the relationship, and again, patients had worse performance when they were coming from the most disadvantaged neighborhoods,” said Dr. Reyes.<br/><br/>The investigators also examined mood, including depression and anxiety, and subjective complaints of cognitive problems. “We found those patients residing in the most disadvantaged neighborhoods complained more about memory problems,” she said.<br/><br/>The results underscore the need for community-level interventions “that could provide resources in support of these older adults and their families and connect them to services we know are good for brain health,” said Dr. Reyes.<br/><br/>Alzheimer’s disease experts “have done a really good job of this, but this is new for epilepsy,” she added. “This gives us a great opportunity to kind of bridge the worlds of dementia and epilepsy.”<br/><br/></p> <h2>Novel Research</h2> <p>Commenting on the research, Rani Sarkis, MD, assistant professor of neurology, Brigham and Women’s Hospital, Boston, said the study is “very useful” as it ties social determinants of health to cognition.</p> <p>“We have not been doing that” in people with epilepsy, he said.<br/><br/>The study, one of the first to look at the link between disadvantaged neighborhoods and cognitive impairment, “has very important” public health implications, including the need to consider access to activities that promote cognitive resilience and other brain health initiatives, said Dr. Sarkis.<br/><br/>Another larger study that looked at neighborhood deprivation and cognition in epilepsy was also presented at the AES meeting and <a href="https://n.neurology.org/content/100/23/e2350">published earlier this year</a> in the journal Neurology.<br/><br/>That study included 800 patients with pharmaco-resistant temporal lobe epilepsy being evaluated for surgery at the Cleveland Clinic, mean age about 38 years. It examined numerous cognitive domains as well as depression and anxiety in relation to ADI generated by patient addresses and split into quintiles from least to most disadvantaged.<br/><br/>After controlling for covariants, the study found scores for all cognitive domains were significantly worse in the most disadvantaged quintile except for executive function, which was close to reaching significance (P = .052), said lead author Robyn M. Busch, PhD, a clinical neuropsychologist in the Epilepsy Center, Department of Neurology, Cleveland Clinic.<br/><br/>The study also found people in the most disadvantaged areas had more symptoms of depression and anxiety compared with people in the least disadvantaged areas, said Busch.<br/><br/></p> <h2>A Complex Issue</h2> <p>Although the exact mechanism tying disadvantaged areas to cognition in epilepsy isn’t fully understood, having less access to health care and educational opportunities, poor nutrition, and being under chronic stress “are all things that affect the brain,” said Dr. Busch.</p> <p>“This is super complex and it’s going to be really difficult to tease apart, but we’d like to look at imaging data to see if it’s something structural, if there are functional changes in the brain or something that might help us understand this better.”<br/><br/>But it’s also possible that having epilepsy “might be pushing people into environments” that offer fewer employment and educational opportunities and less access to resources, she said.<br/><br/>The study authors and Dr. Sarkis report no relevant financial relationships.<span class="end"/></p> <p> <em> <em>A version of this article first appeared on </em> <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/999034">Medscape.com</a>.</span> </em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM AES 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article