Original Research

Evaluating Pharmacists’ Time Collecting Self-Monitoring Blood Glucose Data

Author and Disclosure Information

Background: Patients on intensive insulin regimens are encouraged to self-monitor blood glucose (SMBG) to optomize their therapy. Clinical pharmacist practitioners (CPPs) use SMBG data to adjust diabetes medications; however, collecting SMBG data from patients is seen anecdotally as time intensive.

Methods: CPPs involved in diabetes management on primary care teams at the Boise Veterans Affairs Medical Center in Idaho were asked to estimate and record the following: SMBG data collection method, time spent collecting data, extra time spent documenting or formatting SMBG readings, total patient visit time, and visit type. For total patient visit time, pharmacists were asked to estimate only time spent discussing diabetes care and collecting SMBG data. Data were collected for 1 week using a standardized spreadsheet distributed to 24 CPPs.

Results: Eight pharmacists provided data from 120 patient encounters. For all encounter, the mean time spent collecting SMBG data was 3.3 minutes, and completing additional documentation/formatting was 1.3 minutes for a total of 4.6 minutes. Patient visits lasted a mean 20.1 minutes; 16% was spent in data collection and 6% in documentation and formatting.

Conclusions: At Boise Veterans Affairs Medical Center, CPPs spend relatively little time per patient collecting SMBG data for clinical use. However, this time can be substantial when multiplied over several patient encounters. Opportunities exist to increase efficiency in SMBG data collection and documentation.


 

References

The American Diabetes Association recommends that patients on intensive insulin regimens self-monitor blood glucose (SMBG) to assist in therapy optimization.1 To be useful, SMBG data must be captured by patients, shared with care teams, and used and interpreted by patients and practitioners.2,3 Communication of SMBG data from the patient to practitioner can be challenging. Although technology can help in this process, limitations exist, such as manual data entry into systems, patient and/or practitioner technological challenges (eg, accessing interface), and compatibility and integration between SMBG devices and electronic health record (EHR) systems.4

The Boise Veterans Affairs Medical Center (BVAMC) in Idaho serves more than 100,000 veterans. It includes a main site, community-based outpatient clinics, and a clinical resource hub that provides telehealth services to veterans residing in rural neighboring states. The BVAMC pharmacy department provides both inpatient and outpatient services. At the BVAMC, clinical pharmacist practitioners (CPPs) are independent practitioners who support their care teams in comprehensive medication management and have the ability to initiate, modify, and discontinue drug therapy for referred patients.5 A prominent role of CPPs in primary care teams is to manage patients with uncontrolled diabetes and intensive insulin regimens, in which SMBG data are vital to therapy optimization. As collecting SMBG data from patients is seen anecdotally as time intensive, we determined the mean time spent by CPPs collecting patient SMBG data and its potential implications.

Methods

Pharmacists at BVAMC were asked to estimate and record the following: SMBG data collection method, time spent collecting data, extra time spent documenting or formatting SMBG readings, total patient visit time, and visit type. Time was collected in minutes. Extra time spent documenting or formatting SMBG readings included any additional time formatting or entering data in the clinical note after talking to the patient; if this was done while multitasking and talking to the patient, it was not considered extra time. For total patient visit time, pharmacists were asked to estimate only time spent discussing diabetes care and collecting SMBG data. Visit types were categorized as in-person/face-to-face, telephone, and telehealth using clinical video telehealth (CVT)/VA Video Connect (VVC). Data were collected using a standardized spreadsheet. The spreadsheet was pilot tested by a CPP before distribution to all pharmacists.

CPPs were educated about the project in March 2021 and were asked to record data for a 1-week period between April 5, 2021, and April 30, 2021. One CPP also provided delayed data collected from May 17 to 21, 2021, and these data were included in our analysis.

Descriptive statistics were used to determine the mean time spent by CPPs collecting SMBG data. Unpaired t tests were used to compare time spent collecting SMBG data by different collection methods and patient visit types. A P value of ≤ .05 was considered statistically significant. Data were organized in Microsoft Excel, and statistics were completed with JMP Pro v15.

Results

Eight CPPs provided data from 120 patient encounters. For all patient encounter types, the mean time spent collecting SMBG data was 3.3 minutes, and completing additional documentation/formatting was 1.3 minutes (Table 1).

table 1
Total mean time for SMBG collection and documentation was 4.6 minutes in visits that had a mean length of 20.1 minutes. Twenty-three percent of the visit was devoted to SMBG data, 16% for data collection, and 6% for documentation. In 23 encounters, at least half the time was spent collecting and documenting/formatting data.

When compared by the SMBG collection method, the longest time spent collecting SMBG data was with patient report (3.7 minutes), and the longest time spent documenting/formatting time was with meter download/home telehealth (2 minutes). There was no statistically significant difference in the time to collect SMBG data between patient report and other methods (3.7 minutes vs 2.8 minutes; P = .07).

When compared by visit type, there was not a statistically significant difference between time spent collecting SMBG data (3.8 minutes vs 3.2 minutes; P = .39) (Table 2).

table 2
The most common SMBG collection method for in-person/face-to-face visits was continuous glucose monitor (CGM) (n = 10), followed by meter download/home telehealth (n = 5), patient report (n = 3), and directly from log/meter (n = 1). For telephone or video visits, the most common collection method was patient report (n = 72), followed by directly from log/meter (n = 18), CGM (n = 5), meter download/home telehealth (n = 4), and secure message (n = 2).

Pages

Next Article: