Clinical research and quality improvement
COVID-19 treatment, so far!
COVID-19 has turned rapidly into a fatal illness, causing over 1.8 million deaths worldwide so far. The pandemic has also showed us the power of adaptive trials, multi-arm trials, and the role for collaboration across the global scientific community. A few significant studies are worth mentioning.
Possible future therapies include antiviral monoclonal antibodies, bamlanivimab (Chen P, et al. N Engl J Med. 2020; online ahead of print); early convalescent plasma (Libster R, et al. N Engl J Med. 2021 Jan 6. doi: 10.1056/NEJMoa2033700); and casirivimab-imdevimab (Baum A, et al. Science. 2020 Nov 27 doi: 10.1126/science.abe2402). Development of mRNA COVID-19 vaccines can help with primary prevention and herd immunity (Polack FP, et al. N Engl J Med. 2020;383[27]:2603; Baden LR, et al. N Engl J Med. 2020; Dec 30; doi: 10.1056/NEJMoa2035389).
We are starting to understand why COVID-19 infection is more pathogenic in some, how to predict development of severe disease, and how to best treat respiratory failure. Defeating the pandemic will require ongoing international collaboration in research, development, and resource allocation.
Muhammad Hayat Syed, MBBS
Ankita Agarwal, MD
Fellows-in-Training Members
Critical care
Awake proning in COVID-19
Prone positioning has been shown to improve pulmonary mechanics in intubated patients with acute respiratory distress syndrome (ARDS). Proposed mechanisms for these benefits include shape matching, reversing the pleural pressure gradient, homogenizing distribution of pleural pressures, reducing the impact of the heart and abdomen on the lungs, and maintaining distribution of perfusion. Application of prone positioning has also been shown to reduce mortality in severe ARDS (Guérin, et al. N Engl J Med. 2013;368(23):2159-68). With the COVID-19 pandemic, clinicians have extrapolated that nonintubated patients with severe hypoxia may benefit from awake proning in the hopes of improving oxygenation and decreasing need for intubation. But, what’s the evidence so far?
It remains unclear whether these physiologic and short-term clinical benefits will prevent the need for mechanical ventilation and/or improve long-term outcomes, including mortality. The other nuances of application of prone positioning in spontaneously breathing patients, such as the optimal duration, positioning, clinical setting, termination criteria, and adverse effects will only become clearer with time and more robust studies. Currently, more than 60 studies examining the role of prone positioning in COVID-19 were enrolling or recently completed. Hopefully, more robust trials will provide evidence about the effectiveness of this therapy in this population. Finally, head over to CHEST’s COVID-19 Resource Center to access a downloadable infographic describing the application of prone positioning.
Kathryn Pendleton, MD
Viren Kaul, MD
Steering Committee Members
Home-Based Mechanical Ventilation and Neuromuscular Disease
New horizons in home ventilation
Phasing out a particular ventilator (Philips Respironics Trilogy 100 ventilator) has everyone on a steep learning curve with the replacement (Trilogy EVO). Most features are replicated in the EVO, including volume/pressure control and pressure-supported modes, mouthpiece ventilation, active/passive circuit capability, and portability (11.5 lb). Upgrades include longer battery life (15 hours; 7.5 hours internal/7.5 hours detachable) and use in pediatric patients now greater than or equal to 2.5 kg.
Other significant improvements include lower flow trigger sensitivity to accommodate patients with severe respiratory muscle weakness, a fast start AVAPS with rapid breath-to-breath 3 cm H20 increases for the first minute to rapidly reach target tidal volume, and breath-to-breath auto-EPAP sensing of upper airway resistance to maintain airway patency for patients with upper airway obstruction.
Internal bluetooth transmission to cloud-based monitoring (Care OrchestratorTM) expands access to patients without wi-fi or cellular service. New monitoring modules, SpO2 and EtCO2, and transcutaneous CO2 monitoring (Sentec), transmit to cloud-based monitoring (EVO EtCs2 spring 2021).
These welcome improvements allow clinicians to better match ventilator settings to the patients’ evolving physiology and provide flexibility and connectivity to optimize long-term care.
Karin Provost, DO, PhD
Steering Committee Member
Janet Hilbert, MD
NetWork Member
Online resources
EVO e-learning curriculum