Cosmeceutical Critique

Does the use of frankincense make sense in dermatology?


 

Anticancer activity

The main active ingredient in frankincense, boswellic acid, has been shown to promote apoptosis, suppress matrix metalloproteinase secretion, and hinder migration in metastatic melanoma cell lines in mice.6,12

In 2019, Hakkim et al. demonstrated that frankincense essential oil yielded substantial antimelanoma activity in vitro and in vivo and ameliorated hepatotoxicity caused by acetaminophen.13

There is one case report in the literature on the use of frankincense as a treatment for skin cancer. A 56-year-old man received frankincense oil multiple times a day for 4 months to treat a nodular basal cell carcinoma on one arm (which resolved) and an infiltrative BCC on the chest (some focal residual tumor remained).6,14 Topical frankincense or boswellic acid has been given a grade D recommendation for treating skin cancer, however, because of only one level-of-evidence-5 study.6

Antimicrobial activity

In 2012, de Rapper et al. collected samples of three essential oils of frankincense (Boswellia rivae, Boswellia neglecta, and Boswellia papyrifera) and two essential oil samples of myrrh and sweet myrrh from different regions of Ethiopia to study their anti-infective properties alone and in combination. The investigators observed synergistic and additive effects, particularly between B. papyrifera and Commiphora myrrha. While noting the long history of the combined use of frankincense and myrrh essential oils since 1500 BC, the investigators highlighted their study as the first antimicrobial work to verify the effectiveness of this combination, validating the use of this combination to thwart particular pathogens.15

Just 2 years ago, Ljaljević Grbić et al. evaluated the in vitro antimicrobial potential of the liquid and vapor phases of B. carteri and C. myrrha (frankincense and myrrh, respectively) essential oils, finding that frankincense demonstrated marked capacity to act as a natural antimicrobial agent.9

Transdermal delivery

In 2017, Zhu et al. showed that frankincense and myrrh essential oils promoted the permeability of the Chinese herb Chuanxiong and may facilitate drug elimination from the epidermis via dermal capillaries by dint of improved cutaneous blood flow, thereby augmenting transdermal drug delivery.16 The same team also showed that frankincense and myrrh essential oils, by fostering permeation by enhancing drug delivery across the stratum corneum, can also alter the structure of the stratum corneum.17

Conclusion

The use of frankincense in traditional medicine has a long and impressive track record. Recent research provides reason for optimism, and further investigating the possible incorporation of this botanical agent into modern dermatologic therapies appears warranted. Clearly, however, much more research is needed.

Dr. Baumann is a private practice dermatologist, researcher, author, and entrepreneur who practices in Miami. She founded the Cosmetic Dermatology Center at the University of Miami in 1997. Dr. Baumann has written two textbooks and a New York Times Best Sellers book for consumers. Dr. Baumann has received funding for advisory boards and/or clinical research trials from Allergan, Galderma, Revance, Evolus, and Burt’s Bees. She is the CEO of Skin Type Solutions Inc., a company that independently tests skin care products and makes recommendations to physicians on which skin care technologies are best. Write to her at dermnews@mdedge.com.

References

1. Kimmatkar N et al. Phytomedicine. 2003 Jan;10(1):3-7.

2. Ammon HP. Wien Med Wochenschr. 2002;152(15-16):373-8.

3. Efferth T & Oesch F. Semin Cancer Biol. 2020 Feb 4;S1044-579X(20)30034-1.

4. Banno N et al. J Ethnopharmacol. 2006 Sep 19;107(2):249-53.

5. Poeckel D & Werz O. Curr Med Chem. 2006;13(28):3359-69.

6. Li JY, Kampp JT. Dermatol Surg. 2019 Jan;45(1):58-67.

7. Cao B et al. Molecules. 2019 Aug 24;24(17): 3076.

8. Mertens M et al. Flavour Fragr J. 2009;24:279-300.

9. Ljaljević Grbić M et al. J Ethnopharmacol. 2018 Jun 12;219:1-14.

10. Li XJ et al. J Ethnopharmacol. 2016 Feb 17;179:22-6.

11. Han X et al. Biochim Open. 2017 Feb 3;4:31-5.

12. Zhao W et al. Cancer Detect Prev. 2003;27:67-75.

13. Hakkim FL et al. Oncotarget. 2019 May 28;10(37):3472-90.

14. Fung K et al. OA Altern Med 2013;1:14.

15. de Rapper S et al. Lett Appl Microbiol. 2012 Apr;54(4):352-8.

16. Zhu XF et al. Zhongguo Zhong Yao Za Zhi. 2017 Feb;42(4):680-5.

17. Guan YM et al. Zhongguo Zhong Yao Za Zhi. 2017 Sep;42(17):3350-5.

Pages

Next Article: